高等数学张宇18讲 第六讲 零点问题、微分不等式

例题六

例6.14 设 f ( x ) f(x) f(x)在闭区间 [ 0 , c ] [0,c] [0,c]上连续,其导数 f ′ ( x ) f'(x) f(x)在开区间 ( 0 , c ) (0,c) (0,c)内存在且单调减少,又 f ( 0 ) = 0 f(0)=0 f(0)=0,试应用拉格朗日中值定理证明不等式 f ( a + b ) ⩽ f ( a ) + f ( b ) f(a+b)\leqslant f(a)+f(b) f(a+b)f(a)+f(b),其中常数 a , b a,b a,b满足条件 0 ⩽ a ⩽ b ⩽ a + b ⩽ c 0\leqslant a\leqslant b\leqslant a+b\leqslant c 0aba+bc

  当 a = 0 a=0 a=0时,由 f ( 0 ) = 0 f(0)=0 f(0)=0 f ( a + b ) = f ( b ) = f ( a ) + f ( b ) f(a+b)=f(b)=f(a)+f(b) f(a+b)=f(b)=f(a)+f(b)
  当 a > 0 a>0 a>0时,在 [ 0 , a ] [0,a] [0,a] [ b , a + b ] [b,a+b] [b,a+b]上分别应用拉格朗日中值定理,有
f ′ ( ξ 1 ) = f ( a ) − f ( 0 ) a − 0 = f ( a ) a , ξ 1 ∈ ( 0 , a ) , f ′ ( ξ 2 ) = f ( a + b ) − f ( b ) ( a + b ) − b = f ( a + b ) − f ( b ) a , ξ 2 ∈ ( b , a + b ) . f'(\xi_1)=\cfrac{f(a)-f(0)}{a-0}=\cfrac{f(a)}{a},\xi_1\in(0,a),\\ f'(\xi_2)=\cfrac{f(a+b)-f(b)}{(a+b)-b}=\cfrac{f(a+b)-f(b)}{a},\xi_2\in(b,a+b). f(ξ1)=a0f(a)f(0)=af(a),ξ1(0,a),f(ξ2)=(a+b)bf(a+b)f(b)=af(a+b)f(b),ξ2(b,a+b).
  显然 0 < ξ 1 < a ⩽ b < ξ 2 < a + b ⩽ c 0<\xi_1<a\leqslant b<\xi_2<a+b\leqslant c 0<ξ1<ab<ξ2<a+bc,因 f ′ ( x ) f'(x) f(x) ( 0 , c ) (0,c) (0,c)内单调减少,故 f ′ ( ξ 2 ) ⩽ f ′ ( ξ 1 ) f'(\xi_2)\leqslant f'(\xi_1) f(ξ2)f(ξ1),从而有 f ( a + b ) − f ( b ) a ⩽ f ( a ) a \cfrac{f(a+b)-f(b)}{a}\leqslant\cfrac{f(a)}{a} af(a+b)f(b)af(a),因为 a > 0 a>0 a>0,所以有 f ( a + b ) ⩽ f ( a ) + f ( b ) f(a+b)\leqslant f(a)+f(b) f(a+b)f(a)+f(b)。(这道题主要利用了拉格朗日中值定理求解

例6.15 设 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内二阶可导,且 f ′ ′ ( x ) > 0 f''(x)>0 f(x)>0,证明对于任意的 x 1 , x 2 ∈ ( a , b ) x_1,x_2\in(a,b) x1,x2(a,b),且 x 1 ≠ x 2 x_1\ne x_2 x1=x2 λ ( 0 < λ < 1 ) \lambda(0<\lambda<1) λ(0<λ<1),恒有 f [ λ x 1 + ( 1 − λ ) x 2 ] < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f[\lambda x_1+(1-\lambda)x_2]<\lambda f(x_1)+(1-\lambda)f(x_2) f[λx1+(1λ)x2]<λf(x1)+(1λ)f(x2)

  记 x = λ x 1 + ( 1 − λ ) x 2 x=\lambda x_1+(1-\lambda)x_2 x=λx1+(1λ)x2,不妨设 x 1 < x 2 x_1<x_2 x1<x2,则有 x 1 < x < x 2 x_1<x<x_2 x1<x<x2
  由拉格朗日中值定理
f ( x ) − f ( x 1 ) = f ′ ( ξ 1 ) ( x − x 1 ) = f ′ ( ξ 1 ) ( 1 − λ ) ( x 2 − x 1 ) , x 1 < ξ 1 < x , ( 1 ) f ( x 2 ) − f ( x ) = f ′ ( ξ 2 ) ( x 2 − x ) = f ′ ( ξ 2 ) λ ( x 2 − x 1 ) , x < ξ 2 < x 2 , ( 2 ) f(x)-f(x_1)=f'(\xi_1)(x-x_1)=f'(\xi_1)(1-\lambda)(x_2-x_1),x_1<\xi_1<x,(1)\\ f(x_2)-f(x)=f'(\xi_2)(x_2-x)=f'(\xi_2)\lambda(x_2-x_1),x<\xi_2<x_2,(2) f(x)f(x1)=f(ξ1)(xx1)=f(ξ1)(1λ)(x2x1),x1<ξ1<x,(1)f(x2)f(x)=f(ξ2)(x2x)=f(ξ2)λ(x2x1),x<ξ2<x2,(2)
  由 λ ∗ ( 1 ) − ( 1 − λ ) ∗ ( 2 ) \lambda*(1)-(1-\lambda)*(2) λ(1)(1λ)(2),得
f ( x ) − λ f ( x 1 ) − ( 1 − λ ) f ( x 2 ) = λ ( 1 − λ ) ( x 2 − x 1 ) [ f ′ ( ξ 1 ) − f ′ ( ξ 2 ) ] = λ ( 1 − λ ) ( x 2 − x 1 ) f ′ ′ ( ξ ) ( ξ 1 − ξ 2 ) . \begin{aligned} f(x)-\lambda f(x_1)-(1-\lambda)f(x_2)&=\lambda(1-\lambda)(x_2-x_1)[f'(\xi_1)-f'(\xi_2)]\\ &=\lambda(1-\lambda)(x_2-x_1)f''(\xi)(\xi_1-\xi_2). \end{aligned} f(x)λf(x1)(1λ)f(x2)=λ(1λ)(x2x1)[f(ξ1)f(ξ2)]=λ(1λ)(x2x1)f(ξ)(ξ1ξ2).
  其中 ξ 1 < ξ < ξ 2 \xi_1<\xi<\xi_2 ξ1<ξ<ξ2,又 f ′ ′ ( ξ ) > 0 , λ ( 1 − λ ) > 0 , x 2 − x 1 > 0 , ξ 1 − ξ 2 < 0 f''(\xi)>0,\lambda(1-\lambda)>0,x_2-x_1>0,\xi_1-\xi_2<0 f(ξ)>0,λ(1λ)>0,x2x1>0,ξ1ξ2<0,所以上式有
f ( x ) − λ f ( x 1 ) − ( 1 − λ ) f ( x 2 ) < 0. f(x)-\lambda f(x_1)-(1-\lambda)f(x_2)<0. f(x)λf(x1)(1λ)f(x2)<0.
  即
f [ λ x 1 + ( 1 − λ ) x 2 ] < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) . f[\lambda x_1+(1-\lambda)x_2]<\lambda f(x_1)+(1-\lambda)f(x_2). f[λx1+(1λ)x2]<λf(x1)+(1λ)f(x2).
这道题主要利用了主要利用了拉格朗日中值定理求解

习题六

6.6 证明: ( ln ⁡ 1 + x x − 1 1 + x ) 2 < 1 x ( 1 + x ) 2 \left(\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}\right)^2<\cfrac{1}{x(1+x)^2} (lnx1+x1+x1)2<x(1+x)21

  只要证当 x > 0 x>0 x>0时, ∣ ln ⁡ 1 + x x − 1 1 + x ∣ − 1 x ( 1 + x ) < 0 \left|\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}\right|-\cfrac{1}{\sqrt{x}(1+x)}<0 lnx1+x1+x1x (1+x)1<0即可。
  令 f ( x ) = ln ⁡ 1 + x x − 1 1 + x = ln ⁡ ( 1 + x ) − ln ⁡ x − 1 1 + x f(x)=\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}=\ln(1+x)-\ln x-\cfrac{1}{1+x} f(x)=lnx1+x1+x1=ln(1+x)lnx1+x1,则
f ′ ( x ) = 1 1 + x − 1 x + 1 ( 1 + x ) 2 = ( 1 + x ) x − ( 1 + x ) 2 + x x ( 1 + x ) 2 = − 1 x ( 1 + x ) 2 < 0. \begin{aligned} f'(x)&=\cfrac{1}{1+x}-\cfrac{1}{x}+\cfrac{1}{(1+x)^2}\\ &=\cfrac{(1+x)x-(1+x)^2+x}{x(1+x)^2}\\ &=\cfrac{-1}{x(1+x)^2}<0. \end{aligned} f(x)=1+x1x1+(1+x)21=x(1+x)2(1+x)x(1+x)2+x=x(1+x)21<0.
  又 lim ⁡ x → + ∞ f ( x ) = 0 \lim\limits_{x\to+\infty}f(x)=0 x+limf(x)=0,所以 f ( x ) > 0 f(x)>0 f(x)>0
  令 g ( x ) = ln ⁡ 1 + x x − 1 1 + x − 1 x ( 1 + x ) g(x)=\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}-\cfrac{1}{\sqrt{x}(1+x)} g(x)=lnx1+x1+x1x (1+x)1,则
g ′ ( x ) = 1 1 + x − 1 x + 1 ( 1 + x ) 2 + 1 2 x ⋅ ( 1 + x ) + x x ( 1 + x ) 2 = − 2 x + ( 1 + x ) + 2 x 2 x 3 2 ( 1 + x ) 2 = 1 + 3 x − 2 x 2 x 3 2 ( 1 + x ) 2 . \begin{aligned} g'(x)&=\cfrac{1}{1+x}-\cfrac{1}{x}+\cfrac{1}{(1+x)^2}+\cfrac{\cfrac{1}{2\sqrt{x}}\cdot(1+x)+\sqrt{x}}{x(1+x)^2}\\ &=\cfrac{-2\sqrt{x}+(1+x)+2x}{2x^{\frac{3}{2}}(1+x)^2}=\cfrac{1+3x-2\sqrt{x}}{2x^{\frac{3}{2}}(1+x)^2}. \end{aligned} g(x)=1+x1x1+(1+x)21+x(1+x)22x 1(1+x)+x =2x23(1+x)22x +(1+x)+2x=2x23(1+x)21+3x2x .
  再令 h ( x ) = 1 + 3 x − 2 x h(x)=1+3x-2\sqrt{x} h(x)=1+3x2x ,则 h ′ ( x ) = 3 − 1 x = 0 h'(x)=3-\cfrac{1}{\sqrt{x}}=0 h(x)=3x 1=0,得 x = 1 9 x=\cfrac{1}{9} x=91,为唯一极小值点,也即最小值点,且 h min ⁡ = 2 3 > 0 h_{\min}=\cfrac{2}{3}>0 hmin=32>0,故 h ( x ) > 0 h(x)>0 h(x)>0,于是 g ′ ( x ) > 0 g'(x)>0 g(x)>0,即 g ( x ) g(x) g(x)单调增加,且 lim ⁡ x → + ∞ g ( x ) = 0 \lim\limits_{x\to+\infty}g(x)=0 x+limg(x)=0,所以 g ′ ( x ) < 0 g'(x)<0 g(x)<0。(这道题主要利用了构造函数的方法求解

新版例题六

例6.3

在这里插入图片描述

例6.4

在这里插入图片描述

在这里插入图片描述

例6.7

在这里插入图片描述

例6.12

在这里插入图片描述

在这里插入图片描述

例6.13

在这里插入图片描述

例6.14

在这里插入图片描述

在这里插入图片描述

例6.27

在这里插入图片描述

新版习题六

6.14

在这里插入图片描述

在这里插入图片描述

6.15

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值