目录
- 例题六
- 例6.14 设 f ( x ) f(x) f(x)在闭区间 [ 0 , c ] [0,c] [0,c]上连续,其导数 f ′ ( x ) f'(x) f′(x)在开区间 ( 0 , c ) (0,c) (0,c)内存在且单调减少,又 f ( 0 ) = 0 f(0)=0 f(0)=0,试应用拉格朗日中值定理证明不等式 f ( a + b ) ⩽ f ( a ) + f ( b ) f(a+b)\leqslant f(a)+f(b) f(a+b)⩽f(a)+f(b),其中常数 a , b a,b a,b满足条件 0 ⩽ a ⩽ b ⩽ a + b ⩽ c 0\leqslant a\leqslant b\leqslant a+b\leqslant c 0⩽a⩽b⩽a+b⩽c。
- 例6.15 设 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内二阶可导,且 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,证明对于任意的 x 1 , x 2 ∈ ( a , b ) x_1,x_2\in(a,b) x1,x2∈(a,b),且 x 1 ≠ x 2 x_1\ne x_2 x1=x2及 λ ( 0 < λ < 1 ) \lambda(0<\lambda<1) λ(0<λ<1),恒有 f [ λ x 1 + ( 1 − λ ) x 2 ] < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f[\lambda x_1+(1-\lambda)x_2]<\lambda f(x_1)+(1-\lambda)f(x_2) f[λx1+(1−λ)x2]<λf(x1)+(1−λ)f(x2)。
- 习题六
- 新版例题六
- 新版习题六
- 写在最后
例题六
例6.14 设 f ( x ) f(x) f(x)在闭区间 [ 0 , c ] [0,c] [0,c]上连续,其导数 f ′ ( x ) f'(x) f′(x)在开区间 ( 0 , c ) (0,c) (0,c)内存在且单调减少,又 f ( 0 ) = 0 f(0)=0 f(0)=0,试应用拉格朗日中值定理证明不等式 f ( a + b ) ⩽ f ( a ) + f ( b ) f(a+b)\leqslant f(a)+f(b) f(a+b)⩽f(a)+f(b),其中常数 a , b a,b a,b满足条件 0 ⩽ a ⩽ b ⩽ a + b ⩽ c 0\leqslant a\leqslant b\leqslant a+b\leqslant c 0⩽a⩽b⩽a+b⩽c。
证 当
a
=
0
a=0
a=0时,由
f
(
0
)
=
0
f(0)=0
f(0)=0知
f
(
a
+
b
)
=
f
(
b
)
=
f
(
a
)
+
f
(
b
)
f(a+b)=f(b)=f(a)+f(b)
f(a+b)=f(b)=f(a)+f(b);
当
a
>
0
a>0
a>0时,在
[
0
,
a
]
[0,a]
[0,a]和
[
b
,
a
+
b
]
[b,a+b]
[b,a+b]上分别应用拉格朗日中值定理,有
f
′
(
ξ
1
)
=
f
(
a
)
−
f
(
0
)
a
−
0
=
f
(
a
)
a
,
ξ
1
∈
(
0
,
a
)
,
f
′
(
ξ
2
)
=
f
(
a
+
b
)
−
f
(
b
)
(
a
+
b
)
−
b
=
f
(
a
+
b
)
−
f
(
b
)
a
,
ξ
2
∈
(
b
,
a
+
b
)
.
f'(\xi_1)=\cfrac{f(a)-f(0)}{a-0}=\cfrac{f(a)}{a},\xi_1\in(0,a),\\ f'(\xi_2)=\cfrac{f(a+b)-f(b)}{(a+b)-b}=\cfrac{f(a+b)-f(b)}{a},\xi_2\in(b,a+b).
f′(ξ1)=a−0f(a)−f(0)=af(a),ξ1∈(0,a),f′(ξ2)=(a+b)−bf(a+b)−f(b)=af(a+b)−f(b),ξ2∈(b,a+b).
显然
0
<
ξ
1
<
a
⩽
b
<
ξ
2
<
a
+
b
⩽
c
0<\xi_1<a\leqslant b<\xi_2<a+b\leqslant c
0<ξ1<a⩽b<ξ2<a+b⩽c,因
f
′
(
x
)
f'(x)
f′(x)在
(
0
,
c
)
(0,c)
(0,c)内单调减少,故
f
′
(
ξ
2
)
⩽
f
′
(
ξ
1
)
f'(\xi_2)\leqslant f'(\xi_1)
f′(ξ2)⩽f′(ξ1),从而有
f
(
a
+
b
)
−
f
(
b
)
a
⩽
f
(
a
)
a
\cfrac{f(a+b)-f(b)}{a}\leqslant\cfrac{f(a)}{a}
af(a+b)−f(b)⩽af(a),因为
a
>
0
a>0
a>0,所以有
f
(
a
+
b
)
⩽
f
(
a
)
+
f
(
b
)
f(a+b)\leqslant f(a)+f(b)
f(a+b)⩽f(a)+f(b)。(这道题主要利用了拉格朗日中值定理求解)
例6.15 设 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内二阶可导,且 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,证明对于任意的 x 1 , x 2 ∈ ( a , b ) x_1,x_2\in(a,b) x1,x2∈(a,b),且 x 1 ≠ x 2 x_1\ne x_2 x1=x2及 λ ( 0 < λ < 1 ) \lambda(0<\lambda<1) λ(0<λ<1),恒有 f [ λ x 1 + ( 1 − λ ) x 2 ] < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f[\lambda x_1+(1-\lambda)x_2]<\lambda f(x_1)+(1-\lambda)f(x_2) f[λx1+(1−λ)x2]<λf(x1)+(1−λ)f(x2)。
证 记
x
=
λ
x
1
+
(
1
−
λ
)
x
2
x=\lambda x_1+(1-\lambda)x_2
x=λx1+(1−λ)x2,不妨设
x
1
<
x
2
x_1<x_2
x1<x2,则有
x
1
<
x
<
x
2
x_1<x<x_2
x1<x<x2。
由拉格朗日中值定理
f
(
x
)
−
f
(
x
1
)
=
f
′
(
ξ
1
)
(
x
−
x
1
)
=
f
′
(
ξ
1
)
(
1
−
λ
)
(
x
2
−
x
1
)
,
x
1
<
ξ
1
<
x
,
(
1
)
f
(
x
2
)
−
f
(
x
)
=
f
′
(
ξ
2
)
(
x
2
−
x
)
=
f
′
(
ξ
2
)
λ
(
x
2
−
x
1
)
,
x
<
ξ
2
<
x
2
,
(
2
)
f(x)-f(x_1)=f'(\xi_1)(x-x_1)=f'(\xi_1)(1-\lambda)(x_2-x_1),x_1<\xi_1<x,(1)\\ f(x_2)-f(x)=f'(\xi_2)(x_2-x)=f'(\xi_2)\lambda(x_2-x_1),x<\xi_2<x_2,(2)
f(x)−f(x1)=f′(ξ1)(x−x1)=f′(ξ1)(1−λ)(x2−x1),x1<ξ1<x,(1)f(x2)−f(x)=f′(ξ2)(x2−x)=f′(ξ2)λ(x2−x1),x<ξ2<x2,(2)
由
λ
∗
(
1
)
−
(
1
−
λ
)
∗
(
2
)
\lambda*(1)-(1-\lambda)*(2)
λ∗(1)−(1−λ)∗(2),得
f
(
x
)
−
λ
f
(
x
1
)
−
(
1
−
λ
)
f
(
x
2
)
=
λ
(
1
−
λ
)
(
x
2
−
x
1
)
[
f
′
(
ξ
1
)
−
f
′
(
ξ
2
)
]
=
λ
(
1
−
λ
)
(
x
2
−
x
1
)
f
′
′
(
ξ
)
(
ξ
1
−
ξ
2
)
.
\begin{aligned} f(x)-\lambda f(x_1)-(1-\lambda)f(x_2)&=\lambda(1-\lambda)(x_2-x_1)[f'(\xi_1)-f'(\xi_2)]\\ &=\lambda(1-\lambda)(x_2-x_1)f''(\xi)(\xi_1-\xi_2). \end{aligned}
f(x)−λf(x1)−(1−λ)f(x2)=λ(1−λ)(x2−x1)[f′(ξ1)−f′(ξ2)]=λ(1−λ)(x2−x1)f′′(ξ)(ξ1−ξ2).
其中
ξ
1
<
ξ
<
ξ
2
\xi_1<\xi<\xi_2
ξ1<ξ<ξ2,又
f
′
′
(
ξ
)
>
0
,
λ
(
1
−
λ
)
>
0
,
x
2
−
x
1
>
0
,
ξ
1
−
ξ
2
<
0
f''(\xi)>0,\lambda(1-\lambda)>0,x_2-x_1>0,\xi_1-\xi_2<0
f′′(ξ)>0,λ(1−λ)>0,x2−x1>0,ξ1−ξ2<0,所以上式有
f
(
x
)
−
λ
f
(
x
1
)
−
(
1
−
λ
)
f
(
x
2
)
<
0.
f(x)-\lambda f(x_1)-(1-\lambda)f(x_2)<0.
f(x)−λf(x1)−(1−λ)f(x2)<0.
即
f
[
λ
x
1
+
(
1
−
λ
)
x
2
]
<
λ
f
(
x
1
)
+
(
1
−
λ
)
f
(
x
2
)
.
f[\lambda x_1+(1-\lambda)x_2]<\lambda f(x_1)+(1-\lambda)f(x_2).
f[λx1+(1−λ)x2]<λf(x1)+(1−λ)f(x2).
(这道题主要利用了主要利用了拉格朗日中值定理求解)
习题六
6.6 证明: ( ln 1 + x x − 1 1 + x ) 2 < 1 x ( 1 + x ) 2 \left(\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}\right)^2<\cfrac{1}{x(1+x)^2} (lnx1+x−1+x1)2<x(1+x)21。
证 只要证当
x
>
0
x>0
x>0时,
∣
ln
1
+
x
x
−
1
1
+
x
∣
−
1
x
(
1
+
x
)
<
0
\left|\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}\right|-\cfrac{1}{\sqrt{x}(1+x)}<0
∣∣∣∣∣lnx1+x−1+x1∣∣∣∣∣−x(1+x)1<0即可。
令
f
(
x
)
=
ln
1
+
x
x
−
1
1
+
x
=
ln
(
1
+
x
)
−
ln
x
−
1
1
+
x
f(x)=\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}=\ln(1+x)-\ln x-\cfrac{1}{1+x}
f(x)=lnx1+x−1+x1=ln(1+x)−lnx−1+x1,则
f
′
(
x
)
=
1
1
+
x
−
1
x
+
1
(
1
+
x
)
2
=
(
1
+
x
)
x
−
(
1
+
x
)
2
+
x
x
(
1
+
x
)
2
=
−
1
x
(
1
+
x
)
2
<
0.
\begin{aligned} f'(x)&=\cfrac{1}{1+x}-\cfrac{1}{x}+\cfrac{1}{(1+x)^2}\\ &=\cfrac{(1+x)x-(1+x)^2+x}{x(1+x)^2}\\ &=\cfrac{-1}{x(1+x)^2}<0. \end{aligned}
f′(x)=1+x1−x1+(1+x)21=x(1+x)2(1+x)x−(1+x)2+x=x(1+x)2−1<0.
又
lim
x
→
+
∞
f
(
x
)
=
0
\lim\limits_{x\to+\infty}f(x)=0
x→+∞limf(x)=0,所以
f
(
x
)
>
0
f(x)>0
f(x)>0。
令
g
(
x
)
=
ln
1
+
x
x
−
1
1
+
x
−
1
x
(
1
+
x
)
g(x)=\ln\cfrac{1+x}{x}-\cfrac{1}{1+x}-\cfrac{1}{\sqrt{x}(1+x)}
g(x)=lnx1+x−1+x1−x(1+x)1,则
g
′
(
x
)
=
1
1
+
x
−
1
x
+
1
(
1
+
x
)
2
+
1
2
x
⋅
(
1
+
x
)
+
x
x
(
1
+
x
)
2
=
−
2
x
+
(
1
+
x
)
+
2
x
2
x
3
2
(
1
+
x
)
2
=
1
+
3
x
−
2
x
2
x
3
2
(
1
+
x
)
2
.
\begin{aligned} g'(x)&=\cfrac{1}{1+x}-\cfrac{1}{x}+\cfrac{1}{(1+x)^2}+\cfrac{\cfrac{1}{2\sqrt{x}}\cdot(1+x)+\sqrt{x}}{x(1+x)^2}\\ &=\cfrac{-2\sqrt{x}+(1+x)+2x}{2x^{\frac{3}{2}}(1+x)^2}=\cfrac{1+3x-2\sqrt{x}}{2x^{\frac{3}{2}}(1+x)^2}. \end{aligned}
g′(x)=1+x1−x1+(1+x)21+x(1+x)22x1⋅(1+x)+x=2x23(1+x)2−2x+(1+x)+2x=2x23(1+x)21+3x−2x.
再令
h
(
x
)
=
1
+
3
x
−
2
x
h(x)=1+3x-2\sqrt{x}
h(x)=1+3x−2x,则
h
′
(
x
)
=
3
−
1
x
=
0
h'(x)=3-\cfrac{1}{\sqrt{x}}=0
h′(x)=3−x1=0,得
x
=
1
9
x=\cfrac{1}{9}
x=91,为唯一极小值点,也即最小值点,且
h
min
=
2
3
>
0
h_{\min}=\cfrac{2}{3}>0
hmin=32>0,故
h
(
x
)
>
0
h(x)>0
h(x)>0,于是
g
′
(
x
)
>
0
g'(x)>0
g′(x)>0,即
g
(
x
)
g(x)
g(x)单调增加,且
lim
x
→
+
∞
g
(
x
)
=
0
\lim\limits_{x\to+\infty}g(x)=0
x→+∞limg(x)=0,所以
g
′
(
x
)
<
0
g'(x)<0
g′(x)<0。(这道题主要利用了构造函数的方法求解)
新版例题六
例6.3
例6.4
例6.7
例6.12
例6.13
例6.14
例6.27
新版习题六
6.14
6.15
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。