Sen+MK趋势分析
Sen 斜率估计用于计算趋势值,通常与MK非参数检验结合使用。即首先计算Sen趋势值,然后使用MK方法判断趋势显著性。
本文使用非参数 Mann-Kendall 检验检测图像中是否存在递增或递减趋势和 Sen 斜率以量化趋势的大小(如果存在)来检测图像中的单调趋势。
本文还展示了估计 Mann-Kendall 检验统计量的方差、用于检验是否存在任何趋势的 Z 统计量以及统计量的 P 值(假设为正态分布)。
需要注意的是,这里介绍的方法适用于评估离散数据(即非浮点数)中的单调趋势(即没有季节性的数据)。
算法详解博客1:https://www.jianshu.com/p/eae362946ea9
算法详解博客2:https://zhuanlan.zhihu.com/p/112703276GEE源代码链接:https://code.earthengine.google.com/1149eef0974687085727c02e58152d6b?noload=true
参考资源:https://developers.google.com/earth-engine/tutorials/community/nonparametric-trends
结果展示
MK趋势 检验结果如下图所示:
斜率 结果如图所示:
截距 结果如下图所示:
Sen_slope
Sen_slope: Theil-Sen Median方法又被称为Sen 斜率估计,是一种稳健的非参数统计的趋势计算方法。该方法计算效率高,对于测量误差和离群数据不敏感,常被用于长时间序列数据的趋势分析中。
式中: xi和xj为时间序列数据。β大于0表示时间序列呈现上升趋势; β小于0表示时间序列呈现下降趋势。
Mann-Kendall是一种非参数统计检验方法,最初由Mann在1945年提出,后由Kendall和Sneyers进一步完善,其优点是不需要测量值服从正态分布,也不要求趋势是线性的,并且不受缺失值和异常值的影响,在长时间序列数据的趋势显著检验中得到了十分广泛的应用。其统计检验方法如下:
对于时间序列Xi,i=1, 2, …i, …j, …n。定义标准化检验统计量Z:
式中:xi和xj为时间序列数据,n为数据个数;当n≥8时,检验统计量S近似为正态分布,其均值和方差如下:在给定显著性水平α下,如果
∣
Z
∣
>
Z
1
−
α
2
\ |Z|>Z_{1-\frac{α}{2}}
∣Z∣>Z1−2α则表明不存在趋势的假设被拒绝,时间序列数据存在明显的趋势变化。
Z
1
−
α
2
\ Z_{1-\frac{α}{2}}
Z1−2α为在置信水平α下,标准正态函数分布表对应的值。当Z的绝对值大于1.65、1 .96和2.58时,表示趋势分别通过了信度为90%、95%和99%的显著性检验。
Z值
z值 如图所示:
应用案例
此图来自论文(Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series)
绿线是NDVI的时间序列曲线,可以看出NDVI是增加趋势,并且显著性大于1.96。(其他颜色的序列是其他指标,和本文关系不大)
d图表示NDVI比较稳定。