Hadoop之MapReduce

一、概述

MapReduce 核心功能是将 用户编写的业务逻辑代码 自带默认组件 整合成一个完整的
分布式运算程序 ,并发运行在一个 Hadoop 集群上。
1、优缺点:
优点:
 1 MapReduce 易于编程
它简单的实现一些接口,就可以完成一个分布式程序, 这个分布式程序可以分布到大量
廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一
样的。就是因为这个特点使得 MapReduce 编程变得非常流行。
2 )良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过 简单的增加机器 来扩展它的计算能力。
3 )高容错性
MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高
的容错性。比如 其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,
不至于这个任务运行失败 ,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。
4 )适合 PB 级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。
缺点:
1 )不擅长实时计算:
MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。
2 )不擅长流式计算
流式计算的输入数据是动态的,而 MapReduce 输入数据集是静态的 ,不能动态变化。
这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。
3 )不擅长 DAG (有向无环图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,
MapReduce 并不是不能做,而是 使用后, 每个 MapReduce 作业的输出结果都会写入到磁盘,
会造成大量的磁盘 IO,导致性能非的低下。
2、核心流程
1 )分布式的运算程序往往需要分成至少 2 个阶段。
(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。
(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段
的所有 MapTask 并发实例的输出。
(4) MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业
务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。
3、MapReduce 具体 进程
一个完整的 MapReduce 程序在分布式运行时有三类实例进程:
1 MrAppMaster :负责整个程序的过程调度及状态协调。

(2) MapTask :负责 Map 阶段的整个数据处理流程。
(3) ReduceTask :负责 Reduce 阶段的整个数据处理流程。

 4、常用数据序列化类型

5、MapReduce 编码流程

用户编写的程序分成三个部分: Mapper Reducer Driver
1 Mapper 阶段
1 )用户自定义的 Mapper 要继承自己的父类
2 Mapper 的输入数据是 KV 对的形式( KV 的类型可自定义)
3 Mapper 中的业务逻辑写在 map() 方法中
4 Mapper 的输出数据是 KV 对的形式( KV 的类型可自定义)
5 map() 方法( MapTask 进程)对每一个 <K,V> 调用一次
1 )用户自定义的 Reducer 要继承自己的父类
2 Reducer 阶段
2 Reducer 的输入数据类型对应 Mapper 的输出数据类型,也是 KV
3 Reducer 的业务逻辑写在 reduce() 方法中
4 ReduceTask 进程对每一组相同 k <k,v> 组调用一次 reduce() 方法
3 Driver 阶段
相当于 YARN 集群的客户端,用于提交我们整个程序到 YARN 集群,提交的是
封装了 MapReduce 程序相关运行参数的 job 对象

6、实操WordCount案例(统计每个单词出现的次数)

需求:统计文件中每个单词出现的次数

 1)、Mapper类

package com.hadoop.mapreduce;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable, Text, Text,
        IntWritable>{
    Text k = new Text();
    IntWritable v = new IntWritable(1);
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // 1 获取一行数据
        String line = value.toString();
        // 2 切割(获取单词数组)
        String[] words = line.split(" ");
        // 3 输出(包装成k-v形式输出)
        for (String word : words) {
            k.set(word);
            context.write(k, v);
        }
    }
}

2)、Reduce

package com.hadoop.mapreduce;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text,
        IntWritable>{
    int sum;
    IntWritable v = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context
            context) throws IOException, InterruptedException {
        // 1 累加求和(计算各个单词出现的次数)
        sum = 0;
        for (IntWritable count : values) {
            sum += count.get();
        }
        // 2 输出结果
        v.set(sum);
        context.write(key,v);
    }
}

3)、Driver

package com.hadoop.mapreduce;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException,
            ClassNotFoundException, InterruptedException {
        // 1 获取配置信息对象以及获取 job 对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2 关联本 Driver 程序的 jar
        job.setJarByClass(WordCountDriver.class);
        // 3 关联 Mapper 和 Reducer 的 jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4 设置 Mapper 输出的 kv 类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5 设置最终输出 kv 类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\aa.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\bb.txt"));
        // 7 提交 job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

此时设置输入文件aa.txt

 输出结果是个文件夹:

二、 Hadoop 序列化

1、序列化概述

序列化 就是 把内存中的对象,转换成字节序列 (或其他数据传输协议)以便于存储到磁
盘(持久化)和网络传输。
反序列化 就是将收到字节序列(或其他数据传输协议)或者是 磁盘的持久化数据,转换
成内存中的对象。
 ~为什么不用 Java 的序列化?
       Java 的序列化是一个重量级序列化框架( Serializable ),一个对象被序列化后,会附带
很多额外的信息(各种校验信息, Header ,继承体系等),不便于在网络中高效传输。所以,Hadoop 自己开发了一套序列化机制(Writable)。
Hadoop 序列化特点:
1 )紧凑 : 高效使用存储空间。
2 )快速: 读写数据的额外开销小。
3 )互操作: 支持多语言的交互
2、 自定义 bean 对象实现序列化接口( Writable
在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在 Hadoop 框架内部
传递一个 bean 对象,那么该对象就需要实现序列化接口。
具体实现 bean 对象序列化步骤如下 7 步。
1 )必须实现 Writable 接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造、
public FlowBean() {
    super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
    out.writeLong(upFlow);
    out.writeLong(downFlow);
    out.writeLong(sumFlow);
}
(4)重写反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
    upFlow = in.readLong();
    downFlow = in.readLong();
    sumFlow = in.readLong();
}
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写 toString() ,可用 "\t" 分开,方便后续用。
(7)如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为
MapReduce 框中的 Shuffle 过程要求对 key 必须能排序。 详见后面排序案例。
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

3、序列化案例实操

需求:统计每一个手机号耗费的总上行流量、总下行流量、总流量

--输入数据格式:
7   13560436666 120.196.100.99    1116        954          200
id    手机号码           网络ip           上行流量  下行流量   网络状态码
--期望输出数据格式
13560436666    1116          954         2070
手机号码        上行流量    下行流量   总流量

 1)、自定义 bean 对象实现序列化接口(Writable

package com.hadoop.serialize;

import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//1 继承 Writable 接口
public class FlowBean implements Writable {
    private long upFlow; //上行流量
    private long downFlow; //下行流量
    private long sumFlow; //总流量
    //2 提供无参构造
    public FlowBean() {
    }
    //3 提供三个参数的 getter 和 setter 方法
    public long getUpFlow() {
        return upFlow;
    }
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }
    public long getDownFlow() {
        return downFlow;
    }
    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
    public long getSumFlow() {
        return sumFlow;
    }
    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }
    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }
    //4 实现序列化和反序列化方法,注意顺序一定要保持一致
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
    }
    //5 重写 ToString
    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
}

2)、FlowMapper

package com.hadoop.serialize;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean>
{
    private Text outK = new Text();
    private FlowBean outV = new FlowBean();
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        //1 获取一行数据,转成字符串
        String line = value.toString();
        //2 切割数据
        String[] split = line.split("\t");
        //3 抓取我们需要的数据:手机号,上行流量,下行流量
        String phone = split[1];
        String up = split[split.length - 3];
        String down = split[split.length - 2];
        //4 封装 outK outV(hadoop序列化的bean)
        outK.set(phone);
        outV.setUpFlow(Long.parseLong(up));
        outV.setDownFlow(Long.parseLong(down));
        outV.setSumFlow();
        //5 写出 outK outV
        context.write(outK, outV);
    }
}

3、FlowReducer

package com.hadoop.serialize;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean>
{
    private FlowBean outV = new FlowBean();
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context
            context) throws IOException, InterruptedException {
        long totalUp = 0;
        long totalDown = 0;
        //1 遍历 values,将其中的上行流量,下行流量分别累加
        for (FlowBean flowBean : values) {
            totalUp += flowBean.getUpFlow();
            totalDown += flowBean.getDownFlow();
        }
        //2 封装 outKV
        outV.setUpFlow(totalUp);
        outV.setDownFlow(totalDown);
        outV.setSumFlow();
        //3 写出 outK outV
        context.write(key,outV);
    }
}

4、FlowDriver

package com.hadoop.serialize;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
    public static void main(String[] args) throws IOException,
            ClassNotFoundException, InterruptedException {
        //1 获取 job 对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        //2 关联本 Driver 类
        job.setJarByClass(FlowDriver.class);
        //3 关联 Mapper 和 Reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

//4 设置 Map 端输出 KV 类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

//5 设置程序最终输出的 KV 类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

//6 设置程序的输入输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\flowoutput"));

//7 提交 Job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
三、MapReduce 框架原理
1、InputFormat 数据输入
        MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。
思考: 1G 的数据,启动 8 MapTask ,可以提高集群的并发处理能力。那么 1K 的数
据,也启动 8 MapTask ,会提高集群性能吗? MapTask 并行任务是否越多越好呢?哪些因
素影响了 MapTask 并行度?
MapTask 并行度决定机制:
数据块: Block HDFS 物理上把数据分成一块一块。 数据块是 HDFS 存储数据单位
数据切片: 数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行
存储。 数据切片是 MapReduce 程序计算输入数据的单位 ,一个切片会对应启动一个 MapTask
1 )一个 Job Map 阶段并行度由客户端在提交 Job 时的切片数决定
2 )每一个 Split 切片分配一个 MapTask 并行实例处理
3 )默认情况下,切片大小 =BlockSize
4 )切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
2、Job 提交流程源码和切片源码详解
1)、Job 提交流程源码
 waitForCompletion()
 submit();
 // 1 建立连接
 connect();
    // 1)创建提交 Job 的代理
    new Cluster(getConfiguration());
       // (1)判断是本地运行环境还是 yarn 集群运行环境
       initialize(jobTrackAddr, conf); 
 // 2 提交 job
 submitter.submitJobInternal(Job.this, cluster)
    // 1)创建给集群提交数据的 Stag 路径
    Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
    // 2)获取 jobid ,并创建 Job 路径
    JobID jobId = submitClient.getNewJobID();
    // 3)拷贝 jar 包到集群
    copyAndConfigureFiles(job, submitJobDir);
    rUploader.uploadFiles(job, jobSubmitDir);
    // 4)计算切片,生成切片规划文件
    writeSplits(job, submitJobDir);
    maps = writeNewSplits(job, jobSubmitDir);
    input.getSplits(job);
    // 5)向 Stag 路径写 XML 配置文件
    writeConf(conf, submitJobFile);
    conf.writeXml(out);
    // 6)提交 Job,返回提交状态
    status = submitClient.submitJob(jobId, submitJobDir.toString(),job.getCredentials());

2)、FileInputFormat 切片源码解析(input.getSplits(job)

1 )程序先找到你数据存储的目录。
2 )开始遍历处理(规划切片)目录下的每一个文件。
3 )遍历第一个文件 ss.txt。
         a )获取文件大小 fs.sizeOf(ss.txt)
         b)计算切片大小                                              computeSplitSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M
        c)默认情况下,切片大小 =blocksize
        d )开始切,形成第 1 个切片: ss.txt—0:128M 2 个切片 ss.txt—128:256M 3 个切片
                ss.txt—256M:300M ( 每次切片时,都要判断切完剩下的部分是否大于块的 1.1 倍,不大                                                     于 1.1 倍就划分一块切片
        e )将切片信息写到一个切片规划文件中
        f )整个切片的核心过程在 getSplit() 方法中完成
        g InputSplit 只记录了切片的元数据信息 ,比如起始位置、长度以及所在的节点列表等。
4 )提交切片规划文件到 YARN 上, YARN 上的 MrAppMaster 就可以根据切片规划文件计算开启 MapTask 个数。

 FileInputFormat切片机制:

 FileInputFormat切片大小的参数配置:

 3、FileInputFormat 的切片实现类

FileInputFormat 实现类
思考: 在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制
格式文件、数据库表等。 那么,针对不同的数据类型, MapReduce 是如何读取这些数据的呢?
FileInputFormat 常见的接口实现类包括: TextInputFormat KeyValueTextInputFormat
NLineInputFormat CombineTextInputFormat 和自定义 InputFormat 等。

1)、TextInputFormat

TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。键是存储该行在

整个文件中的起始字节偏移量, LongWritable 类型。值是这行的内容,不包括任何行终止
符(换行符和回车符), Text 类型。

 2)、CombineTextInputFormat

框架默认的 TextInputFormat 切片机制是对任务按文件规划切片, 不管文件多小,都会
是一个单独的切片 ,都会交给一个 MapTask ,这样如果有大量小文件,就 会产生大量的
MapTask ,处理效率极其低下。
1 )应用场景:
CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到
一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。
2 )虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304 );// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
3 )切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。
1 )虚拟存储过程:
        将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不
大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,
那么以最大值切割一块; 当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时
将文件均分成 2 个虚拟存储块(防止出现太小切片)。
例如 setMaxInputSplitSize 值为 4M ,输入文件大小为 8.02M ,则先逻辑上分成一个
4M 。剩余的大小为 4.02M ,如果按照 4M 逻辑划分,就会出现 0.02M 的小的虚拟存储
文件,所以将剩余的 4.02M 文件切分成( 2.01M 2.01M )两个文件。
(2)切片过程:
        (a)判断虚拟存储的文件大小是否大于 setMaxInputSplitSize 值,大于等于则单独
形成一个切片。
        (b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
        (c)测试举例:有 4 个小文件大小分别为 1.7M 5.1M 3.4M 以及 6.8M 这四个小
文件,则虚拟存储之后形成 6 个文件块,大小分别为:
        1.7M ,( 2.55M 2.55M ), 3.4M 以及( 3.4M 3.4M
最终会形成 3 个切片,大小分别为:
       ( 1.7+2.55 M ,( 2.55+3.4 M ,( 3.4+3.4 M
4、CombineTextInputFormat 案例实操
需求:将输入的大量小文件合并成一个切片统一处理。4个小文件用一个切片
实现过程
1 )不做任何处理,运行 1.8 节的 WordCount 案例程序,观察切片个数为 4
number of splits:4
(2)在 WordcountDriver 中增加如下代码,运行程序,并观察运行的切片个数为 3
        (a)驱动类中添加代码如下:
// 如果不设置 InputFormat,它默认用的是 TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置 4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);

        (b)运行如果为 3 个切片。

          number of splits:3
(3)在 WordcountDriver 中增加如下代码,运行程序,并观察运行的切片个数为 1
        (a) 驱动中添加代码如下:
// 如果不设置 InputFormat,它默认用的是 TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置 20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);

        (b)运行如果为 1 个切片

          number of splits:1
四、 MapReduce 工作流程

 

上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第
16 步结束,具体 Shuffle 过程详解,如下:
1 MapTask 收集我们的 map() 方法输出的 kv 对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
(5) ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
(6) ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件, ReduceTask 会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)

 注意:
1 Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数: mapreduce.task.io.sort.mb 默认 100M
1、 Shuffle 机制
        Map 方法之后, Reduce 方法之前的数据处理过程称之为 Shuffle 。(虽然Shuffle阶段不属于Map阶段和Reduce阶段,但是MapTask、ReduceTask都会参与运行)

Shuffle的执行阶段流程

1).Collect阶段:将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value序列化数据,Partition分区信息等。

2).Spill 阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。 

3).Merge 阶段:把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。

4).Copy阶段: ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。

5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程(一个是内存到磁盘的合并,一个是磁盘到磁盘的合并)对内存到本地的数据文件进行合并操作。

6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask 阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可

总结

     Shuffle的大致流程为:Maptask会不断收集我们的map()方法输出的kv对,放到内存缓冲区中,当缓冲区达到饱和的时候(默认占比为0.8)就会溢出到磁盘中,如果map的输出结果很多,则会有多个溢出文件,多个溢出文件会被合并成一个大的溢出文件,在文件溢出、合并的过程中,都要调用partitoner进行分组和针对key进行排序(默认是按照Key的hash值对Partitoner个数取模),之后reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据,reducetask会将这些文件再进行合并(归并排序)。

合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出每一个键值对的Group,调用UDF函数(用户自定义的方法))

注意

Shuffle 中的缓冲区大小会影响到 mapreduce 程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快,正是因为Shuffle的过程中要不断的将文件从磁盘写入到内存,再从内存写入到磁盘,从而导致了Hadoop中MapReduce执行效率相对于Storm等一些实时计算来说比较低下的原因。

Shuffle的缓冲区的大小可以通过参数调整,  参数:io.sort.mb  默认100M

1)、Partition 分区
        Map阶段的结果会根据某个条件分散的输出到各个分区中(分区的数据会溢出为文件),然后这些分区数据成为Reduce阶段的输入源头。

默认分区是根据keyhashCodeReduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区。

public class HashPartitioner<K, V> extends Partitioner<K, V> {
    public int getPartition(K key, V value, int numReduceTasks) {
        return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
    }
}

自定义Partition:

2)、分区总结

1 )如果 ReduceTask 的数量 > getPartition 的结果数,则会多产生几个空的输出文件 part-r-000xx
2 )如果 1<ReduceTask 的数量 <getPartition 的结果数,则有一部分分区数据无处安放,会 Exception ;(分区数太多,且ReduceTask不为1)
3 )如 果 ReduceTask 的数量 =1 ,则不管 MapTask 端输出多少个分区文件,最终结果都交给这一个 ReduceTask,最终也就只会产生一个结果文件 part-r-00000
4 )分区号必须从零开始,逐一累加。
3)、案例分析
例如:假设自定义分区数为 5 ,则
1 )job.setNumReduceTasks(1);  会正常运行,只不过会产生一个输出文件
2 )job.setNumReduceTasks(2);  会报错
3 )job.setNumReduceTasks(6);  大于 5 ,程序会正常运行,会产生空文件
分区案例:

ProvincePartitioner类(自定义数据分区)

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
 @Override
 public int getPartition(Text text, FlowBean flowBean, int numPartitions) {
     //获取手机号前三位 prePhone
     String phone = text.toString();
     String prePhone = phone.substring(0, 3);
     //定义一个分区号变量 partition,根据 prePhone 设置分区号
     int partition;
     if("136".equals(prePhone)){
         partition = 0;
     }else if("137".equals(prePhone)){
         partition = 1;
     }else if("138".equals(prePhone)){
         partition = 2;
     }else if("139".equals(prePhone)){
         partition = 3;
     }else {
         partition = 4;
     }
     //最后返回分区号 partition
     return partition;
    }
}

 在驱动函数中增加自定义数据分区设置和 ReduceTask 设置

public class FlowDriver {
 public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
     //1 获取 job 对象
     Configuration conf = new Configuration();
     Job job = Job.getInstance(conf);
     //2 关联本 Driver 类
     job.setJarByClass(FlowDriver.class);
     //3 关联 Mapper 和 Reducer
     job.setMapperClass(FlowMapper.class);
     job.setReducerClass(FlowReducer.class);
     //4 设置 Map 端输出数据的 KV 类型
     job.setMapOutputKeyClass(Text.class);
     job.setMapOutputValueClass(FlowBean.class);
     //5 设置程序最终输出的 KV 类型
     job.setOutputKeyClass(Text.class);
     job.setOutputValueClass(FlowBean.class);
     //8 指定自定义分区器
     job.setPartitionerClass(ProvincePartitioner.class);
     //9 同时指定相应数量的 ReduceTask
     job.setNumReduceTasks(5);
     //6 设置输入输出路径
     FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));
     FileOutputFormat.setOutputPath(job, new Path("D\\partitionout"));
     //7 提交 Job
     boolean b = job.waitForCompletion(true);
     System.exit(b ? 0 : 1);
 }
}
Shuffle阶段,会进行两次排序,第一次数据到分区后进行快排,第二次进行归并排序。下面开始讲讲Hadoop中的排序
2、排序
        排序是 MapReduce 框架中最重要的操作之一。 MapTask和 ReduceTask 均会对数据 按 照 key 进行排序。该操作属于 Hadoop的默认行为。 任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
        默认排序是按照 字典顺序排序, 且实现该排序的方法是 快速排序。
        对于 MapTask ,它会将处理的结果暂时放到环形缓冲区中, 当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序 ,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会 对磁盘上所有文件进行归并排序。
        对于 ReduceTask ,它从每个 MapTask 上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后, ReduceTask 统一对内存和磁盘上的所有数据进行一次归并排序
1 )部分排序
        MapReduce根据输入记录的键对数据集排序。保证 输出的每个文件内部有序
2 )全排序
        最终输出结果只有一个文件,且文件内部有序。 实现方式是只设置一个 ReduceTask 。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce 所提供的并行架构。
3 )辅助排序:( GroupingComparator 分组)
        在Reduce 端对 key 进行分组。应用于:在接收的 key bean 对象时,想让一个或几个字段相同(全部字段比较不相同)的key 进入到同一个 reduce 方法时,可以采用分组排序。
4 )二次排序
        在自定义排序过程中,如果compareTo 中的判断条件为两个即为二次排序。
1)、 实现 WritableComparable 接口进行自定义排序

 2)、自定义排序实现全排序案例

FlowBean:

public class FlowBean implements WritableComparable<FlowBean> {
 private long upFlow; //上行流量
 private long downFlow; //下行流量
 private long sumFlow; //总流量
 //提供无参构造
 public FlowBean() {
 }
 //生成三个属性的 getter 和 setter 方法
 public long getUpFlow() {
     return upFlow;
 }
 public void setUpFlow(long upFlow) {
     this.upFlow = upFlow;
 }
public long getDownFlow() {
     return downFlow;
 }
 public void setDownFlow(long downFlow) {
     this.downFlow = downFlow;
 }
 public long getSumFlow() {
     return sumFlow;
 }
 public void setSumFlow(long sumFlow) {
     this.sumFlow = sumFlow;
 }
 public void setSumFlow() {
     this.sumFlow = this.upFlow + this.downFlow;
 }
 //实现序列化和反序列化方法,注意顺序一定要一致
 @Override
 public void write(DataOutput out) throws IOException {
     out.writeLong(this.upFlow);
     out.writeLong(this.downFlow);
     out.writeLong(this.sumFlow);
 }
 @Override
 public void readFields(DataInput in) throws IOException {
     this.upFlow = in.readLong();
     this.downFlow = in.readLong();
     this.sumFlow = in.readLong();
 }
 //重写 ToString,最后要输出 FlowBean
 @Override
 public String toString() {
     return upFlow + "\t" + downFlow + "\t" + sumFlow;
 }
 @Override
 public int compareTo(FlowBean o) {
     //按照总流量比较,倒序排列
     if(this.sumFlow > o.sumFlow){
         return -1;
     }else if(this.sumFlow < o.sumFlow){
         return 1;
     }else {
         return 0;
     }
    }
}

 Mapper:

public class FlowMapper extends Mapper<LongWritable, Text, FlowBean, Text> 
{
     private FlowBean outK = new FlowBean();
     private Text outV = new Text();
     @Override
     protected void map(LongWritable key, Text value, Context context) 
throws IOException, InterruptedException {
         //1 获取一行数据
         String line = value.toString();
         //2 按照"\t",切割数据
         String[] split = line.split("\t");
         //3 封装 outK outV
         outK.setUpFlow(Long.parseLong(split[1]));
         outK.setDownFlow(Long.parseLong(split[2]));
         outK.setSumFlow();
         outV.set(split[0]);
         //4 写出 outK outV
         context.write(outK,outV);
     }
}

Reduce:

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<FlowBean, Text, Text, FlowBean> {

 @Override
 protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
     //遍历 values 集合,循环写出,避免总流量相同的情况
     for (Text value : values) {
         //调换 KV 位置,反向写出
         context.write(value,key);
     }
   }
}

Driver:

public class FlowDriver {
public static void main(String[] args) throws IOException, 
ClassNotFoundException, InterruptedException {
 //1 获取 job 对象
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 //2 关联本 Driver 类
 job.setJarByClass(FlowDriver.class);
 //3 关联 Mapper 和 Reducer
 job.setMapperClass(FlowMapper.class);
 job.setReducerClass(FlowReducer.class);
 //4 设置 Map 端输出数据的 KV 类型
 job.setMapOutputKeyClass(FlowBean.class);
 job.setMapOutputValueClass(Text.class);
 //5 设置程序最终输出的 KV 类型
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FlowBean.class);
 //6 设置输入输出路径
 FileInputFormat.setInputPaths(job, new Path("D:\\inputflow2"));
 FileOutputFormat.setOutputPath(job, new Path("D:\\comparout"));
 //7 提交 Job
 boolean b = job.waitForCompletion(true);
 System.exit(b ? 0 : 1);
 }
}
3、Combiner 合并
1 Combiner MR 程序中 Mapper Reducer 之外的一种组件。
2 Combiner 组件的父类就是 Reducer
3 Combiner Reducer 的区别在于运行的位置 Combiner是在每一个 MapTask 所在的节点运行 ;
4 Combiner 的意义就是对每一个 MapTask 的输出进行局部汇总,以减小网络传输量。
5 Combiner 能够应用的前提是不能影响最终的业务逻辑 ,而且, Combiner 的输出 kv应该跟Reducer 的输入 kv 类型要对应起来。
(6)自定义 Combiner 实现步骤

 4、OutputFormat 数据输出

 OutputFormat 接口的实现类:

自定义OutputFormat 的实现类:

 具体实现略。

五、MapReduce 内核源码解析

1、MapTask 工作机制

1 Read 阶段: MapTask 通过 InputFormat 获得的 RecordReader ,从输入 InputSplit 中解析出一个个 key/value
(2) Map 阶段:该节点主要是将解析出的 key/value 交给用户编写 map() 函数处理,并 产生一系列新的 key/value  
(3) Collect 收集阶段:在用户编写 map() 函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用 Partitioner),并写入一个环形内存缓冲区中。
(4) Spill 阶段:即 溢写 ,当环形缓冲区满后, MapReduce 会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
    步骤 1 :利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号
Partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照 key 有序。
   步骤 2 :按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件 output/spillN.out N 表示当前溢写次数)中。如果用户设置了 Combiner ,则写入文件之前,对每个分区中的数据进行一次聚集操作。
    步骤 3 :将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB ,则将内存索引写到文件 output/spillN.out.index 中。
(5) Merge 阶段:当所有数据处理完成后, MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件output/file.out 中,同时生成相应的索引文件 output/file.out.index 。在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多 轮递归合并的方式。每轮合并 mapreduce.task.io.sort.factor (默认 10 )个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
2、 ReduceTask 工作机制
1 Copy 阶段: ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数
据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2) Sort 阶段:在远程拷贝数据的同时, ReduceTask 启动了两个后台线程对内存和磁
盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用
户编写 reduce() 函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一
起, Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了
局部排序,因此, ReduceTask 只需对所有数据进行一次归并排序即可。
(3) Reduce 阶段: reduce() 函数将计算结果写到 HDFS 上。
3、ReduceTask 并行度决定机制
回顾: MapTask 并行度由切片个数决定,切片个数由输入文件和切片规则决定。
思考: ReduceTask 并行度由谁决定?
1 )设置 ReduceTask 并行度(个数)
ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置:
// 默认值是 1 ,手动设置为 4
job.setNumReduceTasks(4);
2 )实验:测试 ReduceTask 多少合适
1 )实验环境: 1 Master 节点, 16 Slave 节点: CPU:8GHZ ,内存 : 2G
(2)实验结论:
3 )注意事项
1 ReduceTask=0 ,表示没有 Reduce 阶段,输出文件个数和 Map 个数一致。
2 ReduceTask 默认值就是 1 ,所以输出文件个数为一个。
3 )如果数据分布不均匀,就有可能在 Reduce 阶段产生数据倾斜
4 ReduceTask 数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1 ReduceTask
5 )具体多少个 ReduceTask ,需要根据集群性能而定。
6 )如果分区数不是 1 ,但是 ReduceTask 1 ,是否执行分区过程。答案是:不执行分区过程。因为在MapTask 的源码中,执行分区的前提是先判断 ReduceNum 个数是否大于 1 。不大于 1肯定不执行。
4、MapTask & ReduceTask 源码解析

 六、Join 应用

1、Reduce Join

        Map 端的主要工作:为来自不同表或文件的 key/value 对, 打标签以区别不同来源的记
。然后 用连接字段作为 key ,其余部分和新加的标志作为 value ,最后进行输出。
        Reduce 端的主要工作:在 Reduce 以连接字段作为 key 的分组已经完成 ,我们只需要
在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进
行合并就 ok 了。
2、Map Join

3、数据清洗(ETL

        “ETL ,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取 (Extract )、转换( Transform )、加载(Load)至目的端的过程。 ETL 一词较常用在数据仓库,但其对象并不限于数据仓库 在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户 要求的数据。 清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。

 

七、MapReduce 开发总结

 

 

八、Hadoop 数据压缩

1、概述
1 )压缩的好处和坏处
压缩的优点:以减少磁盘 IO 、减少磁盘存储空间。
压缩的缺点:增加 CPU 开销。
2 )压缩原则
1 )运算密集型的 Job ,少用压缩
(2) IO 密集型的 Job ,多用压缩
2、 MR 支持的压缩编码

 

 3 压缩方式选择

压缩方式选择时重点考虑: 压缩 / 解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片
1)、 Gzip 压缩
优点:压缩率比较高;
缺点:不支持 Split ;压缩 / 解压速度一般;
2)、 Bzip2 压缩
优点:压缩率高;支持 Split
缺点:压缩 / 解压速度慢。
3)、 Lzo 压缩
优点:压缩 / 解压速度比较快;支持 Split
缺点:压缩率一般;想支持切片需要额外创建索引。
4 )、Snappy 压缩
优点:压缩和解压缩速度快;
缺点:不支持 Split ;压缩率一般;
压缩位置选择
压缩可以在 MapReduce 作用的任意阶段启用。
MapReduce数据压缩:
4、 压缩参数配置
 

 

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值