tensorflow
EggyGeDan
这个作者很懒,什么都没留下…
展开
-
Tensorflow的初学习进程(5)——计算图
计算图是Tensorflow 的最基本的概念。Tensorflow中所有的计算都会被转化成计算图上的结点。Tensorflow 程序一般可以分为两个不同的阶段,第一个阶段定义计算图中所有的计算,在这个过程中,Tensorflow会自动将定义的计算转化为计算图上的结点。Tensorflow有通过tf.get_default_graph获取当前默认的计算图 ,也支持通过tf.Graph函数来生...原创 2019-04-03 21:23:47 · 902 阅读 · 1 评论 -
Tensorflow的初学习进程(3)——Variable 变量
tensorflow里面的变量的定义必须使用xxx = tf.Variable(),才能使xxx成为一个变量,它的作用就是保存和更新神经网络中的参数,对Variable的设置好之后,就规定了它的名字和形状,变量的初始值可以设置为随机数,常数或者是通过其他变量的初始值计算得到。import tensorflow as tfstate = tf.Variable(0,name='counte...原创 2019-04-02 14:26:27 · 217 阅读 · 0 评论 -
Tensorflow的初学习进程(2)——Session 会话控制
Session是执行命令的语句,对话的控制,可以用Session.run可以用来执行一个小的功能这里先用一个小例子表示import tensorflow as tfmatrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2], [2]])product = tf.matmul(matr...原创 2019-04-02 14:10:27 · 430 阅读 · 0 评论 -
Tensorflow的初学习进程(11)——损失函数相关
经典损失函数:神经网络模型的效果和优化的目标是通过损失函数来定义的。分类和回归问题是监督学习的两大种类,分类问题主要是将一事物分成不同的类别,比如前面判断零件是否合格。回归问题则是预测数据的走向。对于分类问题来说,理论上我们设置不同的阈值,当事物超过或没有超过阈值时,我们就将其划分,虽然理论上这样做可行,但是面对实际问题时,我们不会那么做。通过神经网络处理分类问题最常用的方法是设置n个输出...原创 2019-04-07 16:50:21 · 153 阅读 · 0 评论 -
Tensorflow的初学习进程(1)——第一个例子
从一个tensorflow的例子着手,开始理解一个tensorflow上的学习程序是怎么运作的首先引入一个头文件import tensorflow as tf import numpy as npnumpy:NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩...原创 2019-04-01 20:17:36 · 1092 阅读 · 0 评论 -
Tensorflow的初学习进程(10)——深层神经网络简要学习
线性模型:对一个神经网络来说,如果想要增加它的层数,那么,我们所要做的就是在隐藏层中加入非线性的模型。加入非线性层的主要的原因是去线性(貌似有点废话)。那么什么样的神经层是线性的呢?满足这样的模型的就称之为线性模型,在之前的学习中,前向传播算法的实现是基于两次线性层的乘积实现的,将输入乘一个矩阵w1得到矩阵a,然后再将矩阵a同w2相乘得到y。但是这么做的话,其实我们可以先计算w1和w2...原创 2019-04-06 17:02:27 · 130 阅读 · 0 评论 -
Tensorflow的初学习进程(9)——完整神经网络样例程序
这是将前面的所学的结合起来的样例函数,里面包括了数据的定义,变量的定义,神经网络前向传播以及反向传播,不过损失函数和反向传播的算法在之后的学习中将会继续深一步的学习,目前先是写着。import tensorflow as tf#numpy是一个科学计算的工具包,这里通过numpy工具包生成模拟数据集from numpy.random import RandomState#定义训练数据...原创 2019-04-05 11:28:59 · 361 阅读 · 0 评论 -
Tensorflow的初学习进程(8)——监督学习
之前的样例中,所给的变量的取值都是随机的,在利用神经网络更好地解决实际的分类或者回归问题,需要更好地设置参数取值。所以这次将利用监督学习的方式来更合理地设置参数取值。使用监督学习的方式设置神经网络参数需要有一个标注好的训练数据集,以零件为例,这个标注好的训练数据集就是收集的一批合格零件和一批不合格零件。监督学习最重要的思想就是,在已知答案的标注数据集上,模型给出的结果要尽可能接近真实的答案...原创 2019-04-04 21:35:25 · 910 阅读 · 0 评论 -
Tensorflow的初学习进程(7)——Tensorflow游乐场和神经网络
tensorflow游乐场(http://playground.tensorflow.org)是一个通过网页浏览器就可以训练的简单神经网络并实现可视化训练过程的工具。在图中的左侧提供了4种不同的数据集来测试神经网络。选择的数据会显示在图中的output栏中。在默认的数据集中,可以看到这个二维平面上有蓝色和黄色的点,因为只有两种颜色,所以可以看作一个二分类的问题。将实际问题中的实体类比,...原创 2019-04-04 15:20:18 · 818 阅读 · 0 评论 -
Tensorflow的初学习进程(6)——张量
张量就是Tensor,所以对tensorflow来说,tensor就是一个比较重要的概念了。张量的概念:在tensorflow中,所有的数据由张量的形式来表示。从功能的角度来说,张量就是可以被理解是一个多维数组。0阶张量为一个标量,1阶张量就是一维数组,n阶张量就是n维数组。但是在tensorflow中的实现却不是直接采用数组的形式,它是对tensorflow中运算结果的引用,它本身并...原创 2019-04-04 13:47:39 · 155 阅读 · 0 评论 -
Tensorflow的初学习进程(4)——placeholder
placeholder主要是从运行时传入数据。例子:import tensorflow as tfinput1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32)output = tf.multiply(input1,input2)with tf.Session() as sess: pri...原创 2019-04-03 20:03:03 · 169 阅读 · 0 评论