tensorflow游乐场(http://playground.tensorflow.org)是一个通过网页浏览器就可以训练的简单神经网络并实现可视化训练过程的工具。
在图中的左侧提供了4种不同的数据集来测试神经网络。选择的数据会显示在图中的output栏中。在默认的数据集中,可以看到这个二维平面上有蓝色和黄色的点,因为只有两种颜色,所以可以看作一个二分类的问题。
将实际问题中的实体类比,每一个平面上的点都代表了实体的一个属性,比如一个零件的长度和质量,而对零件是否合格的判断是训练的结果。那么提取这些属性,就是所说的特征提取。通过特征提取,每一个实体就可以转化成平面上的点。假设使用长度和质量作为一个零件的特征向量。在图中,features一栏对应了特征向量。
特征向量是神经网络的输入,神经网络的主体如图中所示,是一种分层结构,第一层为输入层,代表特征向量中每一个特征的取值。在二分类问题中,比如判断零件是否合格,神经网络的输出层往往是一个节点,这个节点会输出一个实数值,=。通过它和预先设定的阈值相比较,可以判断是否合格。(数据离阈值越远时,数据越可靠)