OCR-GAN(Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection)-无监督异常检测

这篇论文中,作者他们提出了一种全频重建的异常检测框架,是无监督异常检测
在这里插入图片描述

这张图是它的一个整体网络结构,是一个基于对抗式的网络,里面主要部分就是FD模和CS模块
他们的方法源于频率解耦思想,该思想包含有多个生成器以重建全频率图像,然后与鉴别器交替训练
然后FD模块用来将图像I解耦成全频图像,CS模块通过在编码器之间自适应地选择信道来实现全频交互
在这里插入图片描述

FD模块包含有三个过程,首先使用高斯核对原始图像I进行卷积以获得中间下采样图,然后再进行上采样以及卷积操作得到一个频率图,然后重复上述操作以获得一组频率图,通过相邻频率图的比较得到一组输入I1、I2、I3。。。
在这里插入图片描述

由于经过FD模块得到的输入是相互独立的,但是实际中不同频率之间应该互补,所以作者在这里加入了CS模块,引入了注意力机制,并且举了一个例子,这张图里Fl代表低频特征,Fh代表高频特征,首先将他们相加,经过处理后得到l和h两个注意力向量,然后分别与Fl和Fh相乘得到增强后的F’1和F’2,得到的图像集合输入到不同的生成器中以得到重建图像集合,最后进行融合得到生成图像I
在这里插入图片描述

对于鉴别器D来说,在训练阶段有三个输入,分别是原始图像、经过cutpaste修改的图像以及生成器生成的图像
在这里插入图片描述

测试阶段对于每个测试图像来说,通过异常评分函数对其进行评分,以区分该图像是否为异常

下边是他们在MVTec上的实验结果,最右边是他们的效果,然后左边是不带cutpaste的,右边是带的,效果总体来看是比较好的
作者还进行了消融实验,证明了他们的每个模块对模型都有贡献
在这里插入图片描述
在这里插入图片描述

最后是实验效果,作者与其他的重建方法进行了对比,从图上能看出来他们的模型具有更好的细节重构能力,并且在对比图中异常区域更加突出
在这里插入图片描述

Lcon损失保证输入图像和生成图像之间的差距尽可能缩小
Ladv损失使生成器尽可能重建图像,鉴别器尽可能区分图像
Late损失对潜在空间中正负图像之间的相似性进行惩罚

参考链接:https://blog.csdn.net/qq_41804812/article/details/124799418

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值