KNN(近邻)算法

K近邻算法(K-Nearest-Neighbor)是一种常用的监督学习的方法。
给定某测试样本,基于某种距离度量(如曼哈顿距离,欧几里得距离等)找出训练集中与其最靠近k个训练样本,通过这k个训练样本来评估这个测试样本特征。(近朱者赤,近墨者黑),若是分类任务,则可对这k个样本使用投票法得出最终结果,如果是回归任务,则可使用平均法预测输出结果,还可以通过测试样本对k个训练样本的距离进行加权平均。
实例:检测某电影是什么类型的电影:已知属性(打斗镜头,接吻镜头)
在这里插入图片描述
将上面的样本信息映射到坐标轴上,更易观测:
在这里插入图片描述
然后计算测试样本与训练样本的空间距离,
二维平面的计算公式:
∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} AB=(x1x2)2+(y1y2)2
空间平面上使用欧几里得距离来衡量 m \bm m m样本和 n \bm n n样本之间的距离:
d i s t ( m , n ) = ( m 1 − n 1 ) 2 + ( m 2 − n 2 ) 2 + . . . + ( m i − n i ) 2 = ∑ i = 1 N ( m i − n i ) 2 dist(\bm{m,n})=\sqrt{(m_1-n_1)^2+(m_2-n_2)^2+...+(m_i-n_i)^2}=\sqrt{\sum_{i=1}^N(m_i-n_i)^2} dist(mn)=(m1n1)2+(m2n2)2+...+(mini)2 =i=1N(mini)2
然后根据测试样本的打斗镜头和接吻镜头与上面的点进行距离计算,可找出k个离测试样本距离最近的点。就可以使用投票法决定测试样本的电影类型了。
比如,现在K=4,那么在这个电影例子中,把距离按照升序排列,距离绿点电影最近的前4个的电影分别是《后来的我们》、《前任3》 、《无问西东》 和《红海行动》,这四部电影的类别统计为爱情片:动作片=3:1,出现频率最高的类别为爱情片,所以在k=4时,绿点电影的类别为爱情片。这个判别过程就是k近邻算法。
上例可写成函数:

import pandas as pd
"""
函数功能:KNN分类器
new_data:需要预测分类的数据
dataSet:训练集
k:k近邻算法的参数,即选择距离最小的k个点
"""
def classify(new_data,dataSet,k):
    result=[]
    dist=list((((dataSet.iloc[:,1:3]-new_data)**2).sum(1))**0.5)#计算距离
    dist_1=pd.DataFrame({'dist':dist,'label':(dataSet.iloc[:,3])})
    dr=dist_1.sort_values(by='dist')[:k]#选择前k个最小的
    re=dr.loc[:,'labels'].value_counts()#投票法
    result.append(re.index[0])
    return result

以上可以得出k近邻算法的一般步骤

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测类别。

需要注意K的取值对预测结果有很大的影响,比如:
在这里插入图片描述
当k=3时,绿色会被归为红色所代表的类,k=5时则会被归为蓝色所代表的类。

kd树

当我们遇见的样本数较少时,我们可以轻易的求取样本之间的距离,但当训练集的样本成千上万甚至更多时,一个个的计算样本间的距离再进行比较就会相当的麻烦,为了提高kNN搜索的效率,可以采用特殊的结构存储训练数据,减少计算距离的次数,kd树就是其中一种。

  • kd树中的k与KNN中的k的含义不同,kd树中的k代表的是k维空间,即训练集中的每个样本有k个属性。
  • kd树的建造过程与二叉排序树的建造过程或者插入排序类似,只不过kd树是在k维空间中建树。

假设有训练集 D = x 1 , x 2 , x 3 , . . , x n D={x_1,x_2,x_3,..,x_n} D=x1,x2,x3,..,xn,样本 x i x_i xi有属性 x i = { x i 1 , x i 2 , x i 3 , . . . , x i k } T x_i=\{x_i^1,x_i^2,x_i^3,...,x_i^k\}^T xi={xi1,xi2,xi3,...,xik}T,

构建kd树:

  1. 构造根结点,根结点对应于包含T的k维空间的超矩形区域。
  2. 选择 x 1 x^1 x1坐标中样本取值的中位数,将样本划分到不同的两个子区域。
    由根结点生成深度为1的左、右子结点:左子结点对应坐标 x 1 x^1 x1小于切分点的子区域,右子结点对应于坐标 x 1 x^1 x1大于切分点的子区城.将落在切分超平面上的实例点保存在根结点.
  3. 重复:对深度为j的结点,选择 x i x^i xi为切分的坐标轴,i= j%k+1,以该结点的区域中所有实例的 x i x^i xi(坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域.
    由该结点生成深度为j+1的左、右子结点:左子结点对应坐标 x i x^i xi小于切分点的子区域,右子结点对应坐标 x i x^i xi大于切分点的子区域.
    将落在切分超平面上的实例点保存在该结点,
  4. 直到两个子区域没有实例存在时停止,从而形成kd树的区域划分

kd树建造完成后,若给定一个目标点应该怎样找到与其邻近的点呢?

  1. 在kd树中找出包含目标点x的叶结点:从根结点出发,递归地向下访问kd树.若目标点x当前维的坐标小于切分点的坐标,则移动到左子结点,否则移动到右子结点.直到子结点为叶结点为止。(即依据kd树的建造过程,找到目标点应该划分的子区域,直至到最后一个结点)

  2. 以此叶结点为“当前最近点”.

  3. 递归地向上回退,在每个结点进行以下操作:
    (a)比较该节点与当前最近点到目标点的距离,如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”.
    (b)当前最近点一定存在于该结点一个子结点对应的区域.检查其兄弟结点对应的区域是否有更近的点.具体地,检查其兄弟结点对应的区域是否与以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交.
    如果相交,可能在其兄弟结点对应的区域内存在距目标点更近的点,移动到另一个子结点,接着,递归地进行最近邻搜索;
    如果不相交,向上回退,

  4. 当回退到根结点时,搜索结束.最后的“当前最近点”即为x的最近邻点.

    如果实例点是随机分布的,kd 树搜索的平均计算复杂度是o(logN),这里N是训练实例数. kd 树更适用于训练实例数远大于空间维数时的k近邻搜索.当空间维数接近训练实例数时,它的效率会迅速下降,几乎接近线性扫描,

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值