机器学习之逻辑回归(Logistic Regression)

这篇博客详细探讨了逻辑回归的原理,包括损失函数的梯度、算法实现、决策边界的理解以及如何通过添加多项式特征改进模型。同时,文章还介绍了如何使用One-vs-Rest (OVR) 和 One-vs-One (OVO)策略来解决多分类问题。
摘要由CSDN通过智能技术生成

"""逻辑回归中的Sigmoid函数"""
import numpy as np
import matplotlib.pyplot as plt

def sigmoid(t):
    return 1/(1+np.exp(-t))

x=np.linspace(-10,10,500)
y=sigmoid(x)

plt.plot(x,y)
plt.show()

 结果:

 逻辑回归损失函数的梯度:

 

 

 

 

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值