啥是Huffman树
赫夫曼树,又称最优二叉树。它的最优体现在每个结点的权值与它的路径长度的乘积之和最小。具体定义参考博客:https://blog.csdn.net/heart_love/article/details/50901943
代码实现
结点结构示意:
Data(数据位) | Weight(权值) | Parent(双亲) | Lchild(左孩子) | Rchild(右孩子) |
初始化的结构示意图 (数据在代码中)
data | weight | parent | lchild | rchild |
A | 10 | -1 | -1 | -1 |
B | 20 | -1 | -1 | -1 |
C | 15 | -1 | -1 | -1 |
D | 17 | -1 | -1 | -1 |
Huffman树实现原理:
1、在已知数组结点中找到没有双亲(双亲数据为-1)且权值最小的2个结点 这边设置为 m1,m2。
2、在数组中增加了一个结点 该结点的权值 = m1的权值 + m2的权值 该结点的左孩子为m1 该结点的右孩子为m2
m1和m2的双亲为该下标
3、重复 1和2这两个步骤 直到只剩下一个结点的双亲值为-1
Huffman编码代码输出原理(注意这边的data中的(1)到(3)是没有的为了讲解方便才写上的)
data | weight | parent | lchild | rchild |
A | 10 | 4 | -1 | -1 |
B | 20 | 5 | -1 | -1 |
C | 15 | 4 | -1 | -1 |
D | 17 | 5 | -1 | -1 |
(1) | 25 | 6 | 0 | 2 |
(2) | 37 | 6 | 3 | 1 |
(3) | 62 | -1 | 4 | 5 |
这边以A的huffman编码为例
1、找到A的双亲(1)看A在(1)中若是左孩子则存入0若为右孩子则存入1
2、再找到(1)的双亲(3)看(1)在(3)中若是左孩子则存入0若为右孩子则存入1
3、重复上面步骤直到该结点双亲为-1 其实就是根结点
4、将存入的数据再反序输出 比如C存入的数据为10 则反序输出的数据为01--就是C的huffman编码
代码展示
#include <stdio.h>
#include <stdlib.h>
#define OK 1
#define ERROR 0
#define INF 1000
#define MAX 50
/*
4
A 10
B 20
C 15
D 17
*/
typedef int Status;
typedef struct HuffmanNode{
char data;//数据域
int weight;//权值
int parent,lchild,rchild;//双亲结点 左孩子结点 右孩子结点
}HuffmanNode;
typedef struct HuffmanTree{
HuffmanNode arr[MAX];
int n;//输入元素个数
}HuffmanTree;
//全局变量 用于输出huffman编码
char gg[MAX][MAX];
/*
fflush(stdin)是一个计算机专业术语,功能是清空输入缓冲区,
通常是为了确保不影响后面的数据读取
(例如在读完一个字符串后紧接着又要读取一个字符,此时应该先执行fflush(stdin);)。
*/
Status initTree(HuffmanTree *T){
int i=0;
scanf("%d",&T->n);//输入结点个数
for(i = 0; i < T->n; i++){
fflush(stdin);
scanf("%c%d",&T->arr[i].data,&T->arr[i].weight);//输入数据和权值
T->arr[i].parent=T->arr[i].lchild=T->arr[i].rchild=-1;//设置双亲结点 左孩子结点 右孩子结点为-1
}
return OK;
}
//找到数组中最小的两个数(只可意会) min1比min2的权值小
Status findMin(HuffmanTree T,int *m1,int *m2,int num){
int m3;
int i,min1=INF,min2=INF;
for(i = 0;i<num;i++){
if(T.arr[i].parent == -1){
//若权值大于min1 则交换数据 并赋值数据
if(min1 > T.arr[i].weight){
min2 = min1;*m2 = *m1;
*m1 = i;min1 = T.arr[i].weight;
//若权值大于min2且权值小于min1 则赋值数据
}else if(min2 > T.arr[i].weight){
*m2 = i;min2 = T.arr[i].weight;
}
}
}
//只剩下一个节点的情况
if(min1 == INF || min2 == INF){
return ERROR;
}
return OK;
}
//创建HuffmanTree
Status createTree(HuffmanTree *T){
int i,m1,m2;
i = T->n;
while(findMin(*T,&m1,&m2,i)){
/*
增加结点 该结点的权值 = m1的权值 + m2的权值 该结点的左孩子为m1 该结点的右孩子为m2
m1和m2的双亲为该下标
*/
T->arr[m1].parent = i;
T->arr[m2].parent = i;
T->arr[i].weight = T->arr[m1].weight + T->arr[m2].weight;
T->arr[i].lchild = m1;
T->arr[i].rchild = m2;
T->arr[i].parent = -1;
i++;
}
return OK;
}
//输出Huffman编码
void createHuffmanCode(HuffmanTree T){
int n = T.n;
int i,k;
char c[MAX];
int j,top;
for(k = 0;k<n;k++){
i = k;
j = 0;
top = 0;
int p = T.arr[i].parent;
gg[k][top++] = T.arr[i].data;
gg[k][top++] = ':';
while(T.arr[i].parent != -1){
if(T.arr[p].lchild == i){
c[j++] = '0';
}
if(T.arr[p].rchild == i){
c[j++] = '1';
}
i = p;
p = T.arr[i].parent;
}
while(j != 0){
gg[k][top++] = c[--j];
}
gg[k][top] = '\0';
}
}
//输出HuffmanNode数组
void show(HuffmanTree T){
int i;
for(i = 0; i < T.n+3; i++){
printf("%c %d\t%d %d %d\n ",T.arr[i].data,T.arr[i].weight,T.arr[i].parent,T.arr[i].lchild,T.arr[i].rchild);
}
}
int main()
{
HuffmanTree T;
initTree(&T);
int m1,m2,i;
createTree(&T);
show(T);
createHuffmanCode(T);
for(i = 0;i<T.n;i++){
printf("%s\n",gg[i]);
}
return 0;
}