论文阅读《生成模型的评估》:A NOTE ON THE EVALUATION OF GENERATIVE MODELS

这篇论文探讨了生成模型的评估问题,指出在高维数据中,平均对数似然、Parzen窗口估计和样本视觉保真度之间没有相关性。强调不能仅依赖单一指标评估模型,需要结合应用场景选择合适的评估方法。论文警告避免过度依赖Parzen窗口估计,并提出在图像生成等领域,图像保真度的主观评估更为重要。
摘要由CSDN通过智能技术生成

最近在做GAN相关的东西,导师推荐了一篇生成模型评估的文章,读一读当作笔记。
作者:LucasTheis∗ University of T¨ubingen 72072 T¨ubingen, Germany lucas@bethgelab.org
A¨aronvandenOord∗† Ghent University 9000 Ghent, Belgium aaron.vandenoord@ugent.be
MatthiasBethge University of T¨ubingen 72072 T¨ubingen, Germany matthias@bethgelab.org
发表会议:ICLR 2016

摘要

概率图模型在各种场合都有大范围应用,所以这些模型的形成、训练和评估存在很大的异质性(heterogeneity)也就很正常了,所以一般很难直接比较两个模型。本文测评了三个目前最常用的准则,average log-likelihood,Parzen window estimas,and visual fidelity of samples。当数据是高维的时候,这三个准则,没有任何相关性,是独立的,意思就是一个准则好,另一个不一定也好。
结论就是,不能从一个准则直接推断另一个在准则,需要根据不同的应用场景进行合适的评估,另外也说了尽量避免使用parzen窗估计。

介绍

本文首先展示了基于KL散度和JSD和mmd优化过程导致不同的tradeoff的结果。
然后讨论了,log-likelihood和分类性能,parzen窗估计,样本保

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值