卡尔曼滤波2:数据融合datafusion

本文目的

结合例子,介绍一个简单的,线性系统下的data fusion,也就是数据融合。对于理解高维数据的数据融合,卡尔曼具有一定的意义。

前置知识点

  1. 基本概率论知识

一维情况下的例子

一维空间下,有一个物体k时刻位置为 s k s_k sk,两个有误差的GPS分别对他进行观测,想要尽可能准确的得到物体位置。
系统状态为: x ⃗ k = [ s k ] \vec{x}_k=\begin{bmatrix} s_k\end{bmatrix} x k=[sk]

  • 前提
    1. 两个GPS读数都是 s k s_k sk的无偏估计
    2. 两个GPS读数的噪声相互独立。

MEA是测量值的意思,在这里MEA1代表第一个GPS,MEA2代表第二个GPS,k代表k时刻测量值

观测求解

1. 理想观测模型

如果GPS无误差,无噪声的情况下观测数据就是位置真实值,此时根本只需要一个GPS就能得到物体的位置。
z k M E A 1 = z k M E A 2 = s k z^{MEA1}_k = z^{MEA2}_k = s_k zkMEA1=zkMEA2=sk

2. 实际观测模型

事实上GPS有误差,假设两个GPS分别的误差如下

  1. 第一个gps的误差是 σ 1 = 3 \sigma_1 = 3 σ1=3,观测数据 z k M E A 1 ∼ N ( s k , σ 1 2 ) z^{MEA1}_k\sim N(s_k,{\sigma_1}^2) zkMEA1N(sk,σ12)
  2. 第二个gps的误差是 σ 2 = 5 \sigma_2 = 5 σ2=5,观测数据 z k M E A 2 ∼ N ( s k , σ 2 2 ) z^{MEA2}_k\sim N(s_k,{\sigma_2}^2) zkMEA2N(sk,σ22)

3. 数据融合提高精度

3.1 单个传感器测量值直接当状态估计值

如果将GPS信号直接当作位置的估计值
第一个GPS测出来的数据均方误差为
σ z k M E A 1 2 = D ( s k − z k M E A 1 ) = σ 1 2 \sigma_{z^{MEA1}_k}^2 = D(s_k - z^{MEA1}_k) = \sigma_1^2 σzkMEA12=D(skzkMEA1)=σ12
第二个GPS测出来的数据均方误差为
σ z k M E A 2 2 = D ( s k − z k M E A 2 ) = σ 2 2 \sigma_{z^{MEA2}_k}^2 = D(s_k - z^{MEA2}_k) = \sigma_2^2 σzkMEA22=D(skzkMEA2)=σ22

3.2 数据线性融合作为当前状态估计

现在我希望一次估计能同时用到两个GPS的数据,以更多的信息来提高位置估计的精度。
观测值采用两个GPS线性加权,也是无偏估计。
z ˆ k = ( 1 − K ) z k M E A 1 + K z k M E A 2 = z k M E A 1 + K ( z 2 M E A 2 − z k M E A 1 ) \^z_k = (1-K)z^{MEA1}_k + Kz^{MEA2}_k = z^{MEA1}_k + K(z^{MEA2}_2 - z^{MEA1}_k) zˆk=(1K)zkMEA1+KzkMEA2=zkMEA1+K(z2MEA2zkMEA1)
也就是:
z ˆ k = z k M E A 1 + K ( z 2 M E A 2 − z k M E A 1 ) \^z_k =z^{MEA1}_k + K(z^{MEA2}_2 - z^{MEA1}_k) zˆk=zkMEA1+K(z2MEA2zkMEA1)
此时估计的均方误差就是:
σ z ˆ k 2 = D ( s k − z ˆ k ) = ( 1 − K ) 2 σ 1 2 + K 2 σ 2 2 \sigma_{\^z_k}^2 = D(s_k - \^z_k) = {(1-K)}^2\sigma_1^2+ K^2\sigma_2^2 σzˆk2=D(skzˆk)=(1K)2σ12+K2σ22

注意区分这里的加权系数K(大写),以及代表时刻的角标k(小写)
这里的 z ˆ k \^z_k zˆk是估计值的意思,或者也可以说是 z k E S T z^{EST}_k zkEST,EST是估计estimate的意思
K在卡尔曼滤波中就是卡尔曼增益了

按照MMSE最小均方误差准则,问题变成了求解系数K的值使得 σ z ˆ k 2 \sigma_{\^z_k}^2 σzˆk2最小,这是一个极值点求解问题,非本文重点,这里给出结果。
arg max ⁡ K ∈ [ 0 , 1 ] σ z ˆ k 2 = σ 1 2 σ 1 2 + σ 2 2 \argmax_{K\in [0,1]}{\sigma_{\^z_k}^2} = \frac{\sigma_1^2}{\sigma_1^2+\sigma_2^2} K[0,1]argmaxσzˆk2=σ12+σ22σ12

3.2 线性融合均方误差分析

σ z ˆ k 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \sigma_{\^z_k}^2 = \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} σzˆk2=σ12+σ22σ12σ22
这个误差单一传感器测量的均方误差都要小,也叫做线性最优估计。

4. 实际复杂系统的观测

在实际测量的时候,会遇到如下情况。

  1. 观测数据不只是一维的。
  2. 观测数据不直接等于物体特征,而是有一个线性变化,比如GPS会给出数字化之后的位置,和实际位置有一个线性缩放。有噪声情况也就是 z k = H x k + V k z_k = Hx_k+V_k zk=Hxk+Vk x k = H − ( z k − V k ) x_k = H^-(z_k - V_k) xk=H(zkVk)
  3. 一般仍然假设噪声满足多维高斯分布 z k M E A ∼ N ( s k , Q 2 ) z^{MEA}_k\sim N(s_k,{Q}^2) zkMEAN(sk,Q2)其中Q是观测噪声 V k V_k Vk的协方差矩阵(同一个传感器的不同维度观测数据噪声可能是相关的,会有协方差)。
  4. 不仅传感器之间可以线性融合求解数据估计,系统本身状态方程也可以进行数据估计

参考文献

B站DR_CAN-卡尔曼滤波器

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值