- 博客(136)
- 资源 (15)
- 收藏
- 关注
原创 CFlow原理及代码解析
MVTec AD 数据集https://www.mvtec.com/company/research/datasets/mvtec-ad1.1 概念:Conditional Normalizing Flow,深度生成模型(Generative Model),无监督/弱监督异常检测(如产品表面缺陷识别)。 Google Research 在 2021 年提出(论文:CFlow-AD: Real-Time Industrial Anomaly Detection with Conditional Flows)
2025-12-17 17:36:30
693
原创 yolov13 tensorRT C++代码解析
对检测结果做 NMS 后处理,并在原图上绘制边界框和标签;利用多线程实现“预处理”与“推理+后处理”的并行化;借助 TensorRT 加速深度学习模型推理;使用摄像头采集图像;
2025-11-19 23:45:00
216
原创 ONNX在C++上部署
步骤 1:初始化 ONNX Runtime 环境。(2) 图片与处理preprocess.cpp。步骤 9:后处理(NMS + 解码)步骤 6:创建输入 Tensor。步骤 2:加载 ONNX 模型。步骤 3:获取模型输入输出信息。步骤 12:释放动态分配的内存。步骤 11:显示和保存结果。步骤 10:绘制检测结果。步骤 4:加载测试图像。步骤 8:获取输出数据。(3)预测结果后处理。
2025-11-19 12:54:37
316
原创 使用 C++ 部署 PyTorch 模型
默认情况下会根据上一次训练保留的参数继续训练,如果要从头训练,需要删除./mlruns文件夹,新训练的模型回报存在 ./models路径。在build文件夹有可执行文件torch-cpp-deployment,运行torch-cpp-deployment。把模型转换为TorchScript格式,把训练好的模型放在 ./models/路径下。(1) 训练PyTorch model并保存,把模型转换成TorchScript。先用python训练网络,在转换模型格式,最后用C++部署模型。
2025-11-04 15:51:24
486
原创 LprNet车牌检测
下载tlt(Transfer Learning Toolkit)格式预训练模型,参考网址:https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/lprnet。CPPD(https://github.com/detectRecog/CCPD)数据集训练了一个车牌检测模型(337135张图片,YOLOv5s模型)参考代码:https://github.com/NVIDIA-AI-IOT/deepstream_lpr_app。
2025-11-03 20:28:38
360
原创 YOLOV5_deepStream分析
1 deepstream分析1.1 到deepstream官网,按照指令下载deepstream及其相关包1.2 代码,生成engine文件.修改网络结构 --> 导出onnx文件 --> build engine (注意量化需要提供校准集)‘’'ccd 3.PC/代码/pc/3.yolo_trt_app。
2025-10-28 18:26:42
802
原创 YOLOV5_TensorRT_C++部署
1 安装环境和yolov5代码1.1 安装GPU驱动、CUDA、CUDNN、GPU版Pytorch。(方法一)到官网下载GPU版Pytorch.方法二:用docker安装。(1)安装docker(到官网https://docs.docker.com/engine/install/ubuntu/,按照指令安装) 、(2)安装nvida-container-tookit、(3)拉取pytorch镜像进行测试(找nvida中合适的pytorch容器,https://catalog.ngc.nvida.
2025-10-28 18:22:37
550
原创 TensorRT基础学习
NVIDIA的TensorRT是一个用于高性能深度学习的推理框架,用TensorRT构建模型并推理,可大幅提高模型推理速度。
2025-08-25 15:49:32
320
原创 图像处理案例06 OCR应用
首先要截取图片上的账单,考虑到账单并非都是整齐摆放,为了保持算法的通用性,通过透视变换对扣取的账单摆正,然后调用工具识别账单上的信息。上图中左图为原图,右图为二值化后的图像,观察发现,二值化后的图像有噪声,影响寻找账单的轮廓。3)找到图像的最大外部轮廓,根轮廓得到账单的最小外接矩形的坐标,根据坐标对账单做透视变换。根据图像最外轮廓得到的账单,并对账单做透视变换的结果,根据右图可以做检测。对二值化后的图像做开运算可以消除图像上的噪声,方便寻找图像的轮廓,右图为。4)识别账单上的信息。
2025-02-24 21:45:00
382
原创 树莓派配置YOLO环境
1)在谷歌浏览器中输入 rasberry pi ubuntu imgage(树莓派的Ubuntu镜像) 打开ubuntu的官网下载Ubuntu 24.04.1 LTS到本地,要求4GBRAM 16GB的存储空间。2)把下载Ubuntu压缩包解压,在电脑上插入读卡器,打开磁盘映像工具,选择镜像的目录(xxx.img),等解压完,则写入镜像到卡中。可以对pc上的软件配置连接pi,比如再windterm右侧菜单栏找到树莓派,右击找到属性,在主机输入端口,然后点击树莓派,出现连接窗口,点击即可。
2025-02-20 22:30:31
574
原创 匈牙利算法
匈牙利算法基于代价矩阵找到最小代价的分配方法,是解决分配问题中最优匹配(最小代价)的算法。代价矩阵的行或列同时加或减一个数,得到新的代价矩阵的最优匹配与原代价矩阵相同。
2024-12-24 22:05:35
920
原创 几种常见IoU比较
如上图所示,真实框为红色,其他颜色的框均为预测框,第一个预测框色绿色,其与真实框的iou为0.0179。第二个预测框色天蓝色,其与真实框的iou为0.1875。第三个预测框色蓝色,其与真实框的iou为1。第二个预测框色水红色,其与真实框的iou为0。
2024-12-13 16:24:45
701
原创 图像处理案例04
3. 根据上一步匹配的关键点得出单应性矩阵。4. 根据单应性矩阵对不规则进行透视变换。问题:把不规则的图片按照参考图摆放。1. 用ORB找关键点。
2024-09-26 23:47:53
468
原创 yolov8 下载及使用
防止下载版本过低而无法正常下载,此步骤也可以省略。1.5 清除缓存,防止安装OpenCV时过卡。其中,–verbose用来显示安装进度。1.6 安装ultralytics。1.4 更新pip。1.3 激活虚拟环境。
2024-09-23 21:22:18
1187
原创 数据分析_01_Python基础
x = set([1,2,3,1,2,2,1,3])–>{1, 2, 3}集合并集:set([1,2,3]) | set([2,3,4]) --> {1, 2, 3, 4}集合交集:set([1,2,3]) & set([2,3,4]) --> {2, 3}set添加元素到: x.add(100) --> {1, 2, 3, 100}字典格式:={键1:值1,键2:值2,键3:值3,…实际参数:在调用函数时,函数名后面圆括号中的变量名称。字典嵌套:x={“a”:1,“b”:{“c”:2}}
2024-07-30 22:53:47
552
原创 C++要点总结_06_数组、指针
3. 二维数组的初始化:二维数组元素初始化的方式和一维数组相同,也分为单个元素逐一赋值和使用聚合方式赋值。1.二维数组形式:数据类型 数组名[常量表达式][常量表达式]。2. 二维数组元素的引用:数组名[下标][下标]。
2024-07-26 20:11:36
399
原创 C++要点总结_03_条件判断语句
1.三目运算符(条件运算符): (表达式)?(语句1):(语句2)参考书《C++入门到精通》判断是否是闰年简化版本。
2024-07-25 12:11:21
658
5 TensorFlow模型导出 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
16 使用Docker部署TensorFlow环境 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
1 TensorFlow安装与环境配置 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
10 使用TPU训练TensorFlow模型(Huan) — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
9 TensorFlow分布式训练 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
6 TensorFlow Serving — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
2 TensorFlow基础 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
17 在云端使用TensorFlow — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
3 TensorFlow 模型建立与训练 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
7 TensorFlow Lite(Jinpeng) — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
4 TensorFlow常用模块 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
19 参考资料与推荐阅读 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
12 TensorFlow Datasets 数据集载入 — 简单粗暴 TensorFlow 2 0.4 beta 文档.pdf
2021-10-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1