26-lt-三数之和

一 思路

看到本题的思路就是 排序+三重循环 进行求出所有存在的解

明显时间复杂度 为O(n^3) 最终超时;

思考过后能够知道 ,之前做过两数之和,实际上可以将第一次循环的值作为后面两数之和的target;是滴 这种可解

二 难点

注意循环操作 进行处理重复值的问题

三 结果

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        //找出存在的三元组 使a+b+c = 0
        int n = nums.length;
        Arrays.sort(nums);
        List<List<Integer>> ans = new ArrayList<>();
        //进行三个变量操作  i j k 转换为俩数之和
        for (int first = 0; first < n; first++) {
            //进行过滤掉相同的数据子集
            // 需要和上一次枚举的数不相同
            if (first > 0 && nums[first] == nums[first - 1]) {
                continue;
            }
            // 固定第一个循环的值 然后第二三的循环就是两数之和
            // c 对应的指针初始指向数组的最右端
            int third = n - 1;
            // -a = b + c
            int target = -nums[first];
            // 枚举 b
            for (int second = first + 1; second < n; ++second) {
                // 需要和上一次枚举的数不相同
                if (second > first + 1 && nums[second] == nums[second - 1]) {
                    continue;
                }
                // 需要保证 b 的指针在 c 的指针的左侧
                while (second < third && nums[second] + nums[third] > target) {
                    --third;
                }
                // 如果指针重合,随着 b 后续的增加
                // 就不会有满足 a+b+c=0 并且 b<c 的 c 了,可以退出循环
                if (second == third) {
                    break;
                }
                if (nums[second] + nums[third] == target) {
                    List<Integer> list = new ArrayList<Integer>();
                    list.add(nums[first]);
                    list.add(nums[second]);
                    list.add(nums[third]);
                    ans.add(list);
                }
            }
        }
        return ans;
         
        


    }
}

参考优秀的代码:

public List<List<Integer>> threeSum(int[] nums){
        List<List<Integer>> lists = new ArrayList<>();
        //排序
        Arrays.sort(nums);
        //双指针
        int len = nums.length;
        for(int i = 0;i < len;++i) {
            //经过排序 如果第一层循环为 >0  就不会出现 =0的问题
            if(nums[i] > 0) return lists;

            if(i > 0 && nums[i] == nums[i-1]) continue;
            //当前的第一层循环位置
            int curr = nums[i];
            int L = i+1, R = len-1;
            while (L < R) {
                int tmp = curr + nums[L] + nums[R];
                if(tmp == 0) {
                    List<Integer> list = new ArrayList<>();
                    list.add(curr);
                    list.add(nums[L]);
                    list.add(nums[R]);
                    lists.add(list);
                    while(L < R && nums[L+1] == nums[L]) ++L;
                    while (L < R && nums[R-1] == nums[R]) --R;
                    ++L;
                    --R;
                } else if(tmp < 0) {
                    ++L;
                } else {
                    --R;
                }
            }
        }
        return lists;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着希望活下去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值