tensorRT简明使用 tensorrt主要用于优化模型推理速度,是硬件相关的。首先保存模型的.pth权重文件,然后将其转化为.wts文件。之后编写c++程序对.wts进行编译,生成.engine文件,通过.engine来进行tensorrt的推理。或者将网络结构保存为onnx格式,然后利用ONNX-TensorRT工具将onnx转换为tensorrt模型即可。...
NVIDIA-SMI has failed问题解决 NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
endnote文献管理 简易参考文献管理教程,解决参考文献格式,以及其序号顺序的问题。文献下载地址:Web of Science谷歌学术-谷粉学术直接搜索论文名称,导出endnote格式:文献导入选择刚刚下载的endnote格式文件,导入即可:文献管理新建组:将刚刚导入的文献拖到对应组,方便后续管理:双击导入的文献可进行笔记备注,如果下载了对应的pdf也可以链接起来:文献引用在word页面,需要引用的地方进行鼠标点击,使得...
YOLOv3-quadrangle代码调试记录 代码来源:https://github.com/JKBox/YOLOv3-quadrangle主要使用于四边形文本检测。代码阅读代码结构如下:1.配置文件 cfg/共2个文件,yolov3.cfg定义了darknet+yolo_head的整个结构,ICDAR2015.data说明了训练路径、参数等信息。2.模型结构构建 models.py主要看YOLOLayer和Darknet类,对应yolov3.cfg来进行网络结构的搭建,网络结构图如下,讲解可见[1]:...
【目标检测】“复制-粘贴”数据增强实现 前言本文来源论文《Simple Copy-Paste is a Strong Data Augmentation Methodfor Instance Segmentation》(CVPR2020),对其数据增强方式进行实现。论文地址:https://arxiv.org/abs/2012.07177解读:https://mp.weixin.qq.com/s/nKC3bEe3m1eqPDI0LpVTIA主要思想:本文参考该数据增强的语义分割实现[1],相应修改为对应目标检测的实现,坐
【论文阅读】ABCNet(CVPR2020) 论文题目:ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network论文地址:https://arxiv.org/abs/2105.03620代码地址:https://github.com/aim-uofa/AdelaiDethttps://github.com/Yuliang-Liu/bezier_curve_text_spotting文章贡献:首次采用参数化贝塞尔曲线自适应拟合多方向或弯曲文本
【论文阅读】DBNet(AAAI2020) 论文题目:Real-time Scene Text Detection with Differentiable Binarization论文地址:https://arxiv.org/abs/1911.08947代码地址:https://github.com/MhLiao/DB文章贡献:1. 提出了用于文字检测的可微二值化网络DBNet,可检测水平文本、多方向文本、弯曲文本,比之前的先进方法拥有更快的速度,同时拥有可观的性能。2. DBNet使用轻量级骨干时也能拥有不错的效果,且在推理
【论文阅读】PSENet(CVPR2019) 论文题目:Shape Robust Text Detection with Progressive Scale Expansion Network论文地址:https://arxiv.org/abs/1903.12473代码地址:https://github.com/whai362/PSENet文章贡献:提出了逐级尺寸扩张网络(Progressive Scale Expansion Network,PSENet),它是一种基于分割的文本检测方法,能够精确定位任意形状的文本实例,且对相邻的
【论文阅读】Consistent Instance False Positive Improves Fairness in Face Recognition(CVPR2021) 论文题目:Context-aware Cross-level Fusion Network for Camouflflaged Object Detection论文地址:https://arxiv.org/pdf/2105.12555.pdf代码地址:https://github.com/thograce/C2FNet————————————————版权声明:本文为CSDN博主「络小绎」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://
【论文阅读】Context-aware Cross-level Fusion Network for Camouflaged Object Detection(IJCAI2021) 论文题目:Context-aware Cross-level Fusion Network for Camouflflaged Object Detection 论文地址:
【论文阅读】Explicit Pseudo-pixel Supervision(EPS,CVPR2021) 论文题目:Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segmentation
【论文阅读】Activate or Not: Learning Customized Activation(CVPR2021) 论文题目:Activate or Not: Learning Customized Activation论文地址:https://arxiv.org/pdf/2009.04759.pdf代码地址:https://github.com/nmaac/acon文章贡献:1. 提出了一个新颖的角度来理解:Swish可以解释为ReLU的一种平滑近似;2.基于这个发现,论文进一步分析ReLU的一般形式Maxout系列激活函数,从而得到Swish的一般形式、简单且有效的ACON激活函数;3..
【论文阅读】RepVGG: Making VGG-style ConvNets Great Again(CVPR2021) 论文题目:RepVGG: Making VGG-style ConvNets Great Again论文地址:https://arxiv.org/abs/2101.03697代码地址:https://github.com/DingXiaoH/RepVGG文章贡献:1. 提出RepVGG网络,实现精度与速度的权衡;2. 提出structural re-parameterization ,将多分支的训练模型解耦成普通结构用于推理;3.展示了RepVGG在图像分类和语义分割方面的...
可视化训练过程(visdom/tensorboard) 针对pytorch框架。服务器端[1]1. 安装visdompip install visdom2. 在代码中使用# 创建实例viz = Visdom()# 创建窗口viz.line([0.], [0], win='loss', opts=dict(title='loss', legend=['train_loss', 'val_loss']))其中,实例只用创建一个。窗口可创建多个,win表示窗口名,用来区分后续数据应该在哪个窗口监控;title表示该窗口展示.
【论文阅读】SPNet(CVPR2020) 论文题目:Strip Pooling: Rethinking Spatial Pooling for Scene Parsing论文地址:https://arxiv.org/abs/2003.13328v1代码地址:https://github.com/Andrew-Qibin/SPNet文章贡献:1.提出了strip pooling,它继承了全局平均池化的优点,可以收集长期的依赖关系,同时关注局部细节;2. 基于strip pooling设计了SPM(Strip Pooling..