1.常用的数据、统计方法
1.np.nan:
作用:空值
2.mean():
作用:计算均值,可以通过索引单独统计一列
注意:只统计数字列
参数:
axis参数:默认为0,以列来计算。axis=1则是以行来计算,按照行来汇总
skipna参数:是够忽略NaN,默认True,如False,有NaN的列统计结果扔为NaN
3.主要数学计算方法,可用于Series和DataFrame(1)
df = pd.DataFrame({'key1':np.arange(10),
'key2':np.random.rand(10)*10})
print(df)
print('-----')
print(df.count(),'→ count统计非Na值的数量\n')
print(df.min(),'→ min统计最小值\n',df['key2'].max(),'→ max统计最大值\n')
print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置\n')
print(df.sum(),'→ sum求和\n')
print(df.mean(),'→ mean求平均值\n')
print(df.median(),'→ median求算数中位数,50%分位数\n')
print(df.std(),'\n',df.var(),'→ std,var分别求标准差,方差\n')
print(df.skew(),'→ skew样本的偏度\n')
print(df.kurt(),'→ kurt样本的峰度\n')
4.主要数学计算方法,可用于Series和DataFrame(2)
df['key1_s'] = df['key1'].cumsum()
df['key2_s'] = df['key2'].cumsum()
print(df,'→ cumsum样本的累计和\n')
df['key1_p'] = df['key1'].cumprod()
df['key2_p'] = df['key2'].cumprod()
print(df,'→ cumprod样本的累计积\n')
print(df.cummax(),'\n',df.cummin(),'→ cummax,cummin分别求累计最大值,累计最小值\n')
5.唯一值:.unique()
s = pd.Series(list('asdvasdcfgg'))
sq = s.unique()
print(s)
print(sq,type(sq))
print(pd.Series(sq))
sq.sort()
print(sq)
6.值计数:.value_counts()
sc = s.value_counts(sort = False)
print(sc)
7.成员资格:.isin()
s = pd.Series(np.arange(10,15))
df = pd.DataFrame({'key1':list('asdcbvasd'),
'key2':np.arange(4,13)})
print(s)
print(df)
print('-----')
print(s.isin([5,14]))
print(df.isin(['a','bc','10',8]))