持续coding,保持happy
前言
我们在深度学习的时候,最开始总有一个问题。
如何把自己本地的数据,包装成对应的DataSet和DataLoader。
一般不会遇到这种问题,主要是我任务的开源数据量很小,或者有一些有代码,却没有数据。
数据集
首先看一下我的数据集,它是图片分类的二分类的任务。train是训练数据,val是验证数据。ants里面全部都是蚂蚁的图片,bees全部都是蜜蜂的图片。
现在还是比较好理解的,我需要把这些数据读进去,放入dataset中。
官网代码详解
1.标记csv文件
这是官网link提供的参考数据和代码,它的数据表如下所示,左边是图片名,右边是标签名。
2.官方代码
import os
import pandas as pd
from torch.utils.data import Dataset
from torchvision.io import read_image
class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
在写自己的Dataset的时候,需要重写3个方法,len,init,getitem。
我们可能需要想象一下,读取左边的图片地址,然后再磁盘上面读取对应的文件(图片)和标签。
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
上面代码是初始化一些参数,比如:
annotations_file 文件名
img_dir 放图片的地址
transform 图片可能需要转换成对应的格式
target_transform label可能需要转换成对应的格式
def __len__(self):
return len(self.img_labels)
上面代码就是返回一个dataset的长度。
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
上面代码是再磁盘中读取文件,并进行一些相应的转变:
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) # 拼接完成图片的地址
image = read_image(img_path) # 读取图片
label = self.img_labels.iloc[idx, 1] # 读取label
if self.transform: # 必要的转变
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
2.自己的数据集和代码
import os
from torch.utils.data import Dataset
from PIL import Image
from torchvision.io import read_image
class MyData(Dataset):
def __init__(self, root_dir, label_dir, transform=None, target_transform=None):
self.root_dir = root_dir
self.label_dir = label_dir
self.path = os.path.join(self.root_dir, self.label_dir)
self.img_path = os.listdir(self.path)
def __len__(self):
return len(self.img_path)
def __getitem__(self, idx):
img_name = self.img_path[idx]
img_item_path = os.path.join(self.root_dir, self.label_dir, self.img_path[idx])
image = Image.open(img_item_path)
# 另一种方式读取3维向量
# image = read_image(img_item_path)
label = self.label_dir
return image, label
if __name__ == "__main__":
train_root_dir = ".data/hymenoptera_data/train"
test_root_dir = ".data/hymenoptera_data/val"
ants_label = "ants"
bees_label = "bees"
train_ants_dataset = MyData(train_root_dir, ants_label)
train_bees_dataset = MyData(train_root_dir, bees_label)
test_ants_dataset = MyData(test_root_dir, ants_label)
test_bees_dataset = MyData(test_root_dir, bees_label)
print("done")