Dataset和Dataloader

## Dataset和Dataloader

### Dataset

Dataset是一个抽象类,实际使用中需要继承Dataset,并对其__len__()方法和__getitem__(idx)进行重构。前者为返回数据集长度,后者为查询idx所对应的img和其label。

### 数据增强对数据集的影响:

数据增强操作可以在Dataset中的getitem方法中实现。

class LeavesDataset(Dataset):
    def __init__(self, csv, transform=None):
        self.csv = csv
        self.transform = transform

    def __len__(self):
        return len(self.csv['image'])

    def __getitem__(self, idx):
        img = cv2.imread(self.csv['image'][idx])
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        label = labelmap[self.csv['label'][idx]]
        if self.transform:
            img = self.transform(image=img)['image']    # transform返回字典
        return img, torch.tensor(label).type(torch.LongTensor)    # img, label

假设数据集一共有100张图片,pytorch并非对数据集中的每张图片进行aug操作,将数据集扩增到200张,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值