windows系统下如何确认CUDA和CUDNN都安装成功了

目录

前言

确认CUDA安装成功

确认CUDNN安装是否成功


前言

本文概述:在Windows操作系统下,很多人只知道怎么判断CUDA是否安装成功,却不知道该怎么样去判断CUDNN也安装成功,因此作者特地出了一篇文章来作为教程。

作者介绍:作者本人是一名人工智能炼丹师,目前在实验室主要研究的方向为生成式模型,对其它方向也略有了解,希望能够在CSDN这个平台上与同样爱好人工智能的小伙伴交流分享,一起进步。谢谢大家鸭~~~

 如果你觉得这篇文章对您有帮助,麻烦点赞、收藏或者评论一下,这是对作者工作的肯定和鼓励。  

确认CUDA安装成功

 

 进入如下CUDA目录

 

启动cmd命令行节目并将deviceQuery拖入命令行窗口, 然后按回车运行

 

出现这个,则说明第一项测试通过 

 

然后同理将bandwidthTest拖入命令行并回车 

 

出现这个结果,则第二项测试也通过了 。有些网传说第二项测试是检查cudnn是否正常的这是错误的,因为不安装cudnn这项测试也可以通过。通过这两项测试则CUDA安装正确了。

确认CUDNN安装是否成功

目前博主知道的确认CUDNN安装是否成功的办法需要已经安装好pytorch框架才能确认 

打开命令行,然后进入你已经安装好pytorch的conda环境,然后输入python并按回车 

 

然后依次执行下列的命令 

>>> import torch
>>> print(torch.backends.cudnn.version())
#能够正确返回8200
>>> from torch.backends import cudnn # 若正常则静默
>>> cudnn.is_available() 
# 若正常返回True
>>> a=torch.tensor(1.)
>>> cudnn.is_acceptable(a.cuda()) 
# 若正常返回True

 

出现如图所示的结果,则CUDNN安装正确。 

 如果您觉得这篇文章对您有帮忙,请点赞、收藏。您的点赞是对作者工作的肯定和鼓励,这对作者来说真的非常重要。如果您对文章内容有任何疑惑和建议,欢迎在评论区里面进行评论,我将第一时间进行回复。 

在Anaconda中安装CUDAcuDNN可以使用以下步骤: 1. 确定您需要的CUDA版本,例如CUDA 11.0或11.1。 2. 在NVIDIA官网下载与您的CUDA版本对应的cuDNN库。需要注册并登录NVIDIA开发者账户才能下载。 3. 将下载好的cuDNN库解压缩,将文件夹中的文件复制到CUDA安装目录下,即CUDA安装目录下的bin、includelib文件夹中。 4. 确保您已经安装了Anaconda,并且在您的环境中已经安装CUDA。您可以使用以下命令在Anaconda中安装CUDA:`conda install cudatoolkit=11.0`。这里以安装CUDA 11.0为例。 5. 在安装CUDA后,您需要将CUDA添加到您的环境变量中。您可以使用以下命令在Anaconda中添加CUDA到您的环境变量中: ``` export PATH=/usr/local/cuda-11.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH ``` 如果您使用Windows操作系统,则需要将以上命令修改为: ``` set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin;%PATH% set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\extras\CUPTI\lib64;%PATH% set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include;%PATH% set LD_LIBRARY_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin;%LD_LIBRARY_PATH% set LD_LIBRARY_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib64;%LD_LIBRARY_PATH% ``` 6. 确保您已经激活了您的环境。您可以使用以下命令在Anaconda中激活您的环境: ``` conda activate <您的环境名> ``` 7. 最后,您需要在您的环境中安装cuDNN。您可以使用以下命令在Anaconda中安装cuDNN: ``` conda install cudnn=8.0.4 ``` 这里以cuDNN 8.0.4为例,您可以根据您下载的cuDNN版本进行修改。 完成以上步骤后,您就成功在Anaconda中安装CUDAcuDNN
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客柒羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值