贝叶斯网

本文介绍了概率图模型(PGM)的概念,它是一种结合概率论和图论的框架,用于处理复杂系统的推理问题。贝叶斯网作为PGM的一种,是由有向无圈图(DAG)和局部条件概率分布(CPD)组成的,用于描述概率空间并进行推理预测。通过链式法则和条件独立性简化了联合分布的表示,使得模型更加紧凑。贝叶斯网中的节点表示随机变量,边则表示变量间的依赖关系。文章聚焦于贝叶斯网的基本定义和表示方法。
摘要由CSDN通过智能技术生成

这里是这几天一直在忙数据的筛选和工程上的一些脚本编写、跑实验啥的,没有上来看看。今天把之前学习的贝叶斯网翻出来,记个号,到时候仔看看。因为感觉贝叶斯网这种基础数据模型多掌握一些没有坏处,自己都存到脑子里面比较好。

开头需要精炼地解决以下问题

  • 概率图模型(Probabilistic Graphical Models,PGM)

PGM是概率论和图论的结合产物
PGM是一种能够构建和利用复杂系统概率模型的通用框架。复杂系统的一个特点是存在多个相互关联的部分,并且许多部分与推理任务有直接或间接的关系。PGM基于陈述性表示,以计算机可读的形式,编码表示我们关于系统如何工作的知识。

  • PGM能够干什么

针对推理问题:如何利用已存在的/观察到的信息去获得结论/未知的信息,一种方法是利用概率论来解决。
在给定若干随机变量的值的情况下,利用后验概率来评估其他变量的取值情况,给出各种取值的可能性。这些随机变量(X1,…,Xn)的可能取值形成一个概率空间,我们可以选择联合分布作为模型来描述此空间。如例1.1[Page3]:
在这里插入图片描述
面对大规模复杂问题,使用联合分布进行显式的记录会出现数据量多、数据稀疏、获取困难等问题[Page45]。因此我们要采用一种紧凑的方式来描述概率空间。紧凑表示概率空间的实现主要依赖于以下两项:
1.链式法则和条件独立,针对随机变量集合X={X1,…,Xn},基于链式法则有以下公式:
P(X1,…,Xn)= P(X1)P(X2| X1)…P(Xn| X1…Xn-1)
即,联合分布可以因子分解为n个条件或先验概率(因子)的乘积。对联合分布的描述变为对各个因子的描述,每个因子表示一个变量在网络中给定父节点时的条件概率,用条件表示比联合分布的显示表示更加自然,但目前来看不会变得紧凑。
在此基础上考虑条件独立,假设变量Xn在X1给定的情况下独立于其他变量X-1-n={X1,…,Xn}-{X1, Xn}:
(Xn⊥X-1-n | X1)
此时的联合分布为:
P(X1,…,Xn)= P(X1)P(X2| X1)…P(Xn| X1)
此时描述因子的参数就减少了,变得紧凑了一点(定义3.1)[Page45-50] 。
2.图结构,采用图的形式一方面更加直观地反映变量之间的联系,而且后续可以基于图做进一步的分析。
使用图模型可以清楚地表示条件概率公式中条件和结果之间的关系。就贝叶斯网而言,随机变量X1、Xn分别对应网络中的两个节点,概率模型中独立性的方向用从X1到Xn的一条边表示。
概率空间用概率模型描述,概率模型可以是显示的联合分布,也可以是概率图模型。一种能够构建和利用复杂系统概率模型的通用框架。复杂系统的一个特点是存在多个相互关联的部分,并且许多部分与推理任务有直接或间接的关系[Page2]。

  • 什么是贝叶斯网络
    一种有向无圈图,是一种组合数据结构[Page45]
  • 用来做什么/有何意义/用来解决什么问题
    同PGM:表示概率空间,基于概率空间和观测到的信息做可能结果的推理预测,结合专家的知识和累积的数据来学习/获取概率空间。
  • 有向图与无向图相比又是有哪些
    目前没有了解无向图,没有做过对比。

围绕着贝叶斯网络学习其相关内容:网络的表示、基于网络的推理以及网络的学习。本文档首先总结表示部分的学习——用贝叶斯网描述概率空间。

1. 贝叶斯网基本定义

贝叶斯网(Bayesian Networks,BN)由有向无圈图(DAG)g以及一系列局部概率模型(local probability model),即图中各个节点的局部条件概率分布(CPD)组成。g中节点为论域/概率空间中的随机变量;边代表了一个节点与另一个节点的直接关联;CPD用于各个变量对其父节点的依赖,在表示部分,还没有体现出贝叶斯网的“贝叶斯”。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
全概率分布可以回答相关领域的任何问题,但随着变量数目的增 加,全概率分布的联合取值空间却可能变得很大。另外,对所有的原 子事实给出概率,对用户来说也非常困难。 若使用Bayes 规则,就可以利用变量之间的条件独立关系简化计 算过程,大大降低所需要声明的条件概率的数目。我们可以用一个叫 作Bayesian 的数据结构来表示变量之间的依赖关系,并为全概率分 布给出一个简明的表示。 定义(Bayesian ):Bayesian T 是一个三元组(N,A,P),其 中 1. N 是节点集合 2. A 是有向弧集合,与N 组成有限非循环G =(N,A) 3. P {p(V | ) :V N} v    ,其中 v  代表节点V 的父亲节点集合 Bayesian 是一个有向非循环: (1) 中节点与知识领域的随机变量一一对应(下文中不区分节 点与变量); (2)中的有向弧表示变量间的因果关系,从节点X 到节点Y 有 向弧的直观含义是X 对Y 有直接的因果影响;影响的强度或者说不确 定性由条件概率表示; (3)每个节点有一个条件概率表,定量描述其所有父亲节点对于 该节点的作用效果。 -2- (4)由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 较容易的 较容易的 较容易的 (给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 )─ 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 (给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 困难) 。一旦 。一旦 。一旦 BayesianBayesianBayesianBayesianBayesian Bayesian的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值