他
【问题描述】
一张长度为N的纸带,我们可以从左至右编号为0 − N(纸带最左端标号为 0)。现在有M次操作,每次将纸带沿着某个位置进行折叠,问所有操作之后纸带 的长度是多少。
【输入格式】
第一行两个数字N, M如题意所述。 接下来一行M个整数代表每次折叠的位置。
【输出格式】
一行一个整数代表答案。
【样例输入】
5 2
3 5
【样例输出】
2
【样例解释】
树上有只鸟。
【数据规模与约定】
对于60%的数据,N, M ≤ 3000。 对于100%的数据,N ≤ 10^18 , M ≤ 3000。
1 #include<iostream>
2 #include<cstdio>
3 #define ULL unsigned long long
4 using namespace std;
5 ULL f[3005],n,L,R;
6 int m;
7 inline ULL read()
8 {
9 ULL w=0,flag=1;char ch=getchar();
10 while(ch>'9'||ch<'0'){if(ch=='-')flag=-1;ch=getchar();}
11 while(ch<='9'&&ch>='0'){w=w*10+ch-'0';ch=getchar();}
12 return w*flag;
13 }
14 int main()
15 {
16 freopen("he.in","r",stdin);
17 freopen("he.out","w",stdout);
18 n=read();m=read();
19 L=0;R=n;
20 for(int i=1;i<=m;i++)f[i]=read();
21 for(int i=1;i<=m;i++)
22 {
23
24 if(f[i]*2>=L+R) R=f[i];// 舍掉右边
25 else L=f[i];// 舍掉左边
26
27 for(int j=i+1;j<=m;j++)
28 {
29 if(f[j]>R) f[j]=R*2-f[j];
30 if(f[j]<L) f[j]=L*2-f[j];
31 }
32
33 }
34
35 cout<<R-L<<endl;
36 fclose(stdin);
37 fclose(stdout);
38 return 0;
39 }
思路:对于每次折叠,从该点划分成两半,舍掉长度短的一半,并且维护一次后面所有的折叠点