洛谷 P 1387 最大正方形

题目描述

在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长。

输入输出格式

输入格式:

 

输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m个数字,用空格隔开,0或1.

 

输出格式:

 

一个整数,最大正方形的边长

 

输入输出样例

输入样例#1:
4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1
输出样例#1:
2
 1 #include<cstdio>
 2 using namespace std;
 3 int n,m,f[105][105],w[105][105];
 4 int min(int a,int b){ if(a<b) return a;else return b; } 
 5 int max(int a,int b){ if(a>b) return a;else return b; }
 6 int main()
 7 {
 8     scanf("%d%d",&n,&m);
 9     for(int i=1;i<=n;i++)
10       for(int j=1;j<=m;j++)
11         scanf("%d",&w[i][j]);
12     for(int i=1;i<=n;i++)
13       for(int j=1;j<=m;j++){
14           if(w[i][j]==0) continue;
15           f[i][j]=min( min(f[i-1][j],f[i-1][j-1]),f[i][j-1] )+1;
16       }
17     int ans=0;
18     for(int i=1;i<=n;i++)
19       for(int j=1;j<=m;j++)
20         ans=max(ans,f[i][j]);
21     printf("%d\n",ans);
22     return 0;
23 }
24 /* 我们以f[i][j]记录以i,j为右下角的正方形的边长
25  状态转移方程:f[i][j]=min( min(f[i-1][j],
26  f[i-1][j-1]),f[i][j-1] )+1 只有当其左上方,左边,上边全部为1时
27  这时 两层min函数的返回值为1 +1 得到2 这样才构成了一个全部为一的 
28  边长为2 正方形 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七情六欲·

学生党不容易~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值