设
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 为以
(
i
,
j
)
(i,j)
(i,j) 为右下角的最大正方形的边长。
d
p
[
i
]
[
j
]
=
min
1
≤
i
≤
n
,
1
≤
j
≤
m
{
d
p
[
i
−
1
]
[
j
]
,
d
p
[
i
−
1
]
[
j
−
1
]
,
d
p
[
i
]
[
j
−
1
]
}
+
1
dp[i][j]=\min\limits_{1\leq i\leq n,1\leq j\leq m}\{dp[i-1][j],dp[i-1][j-1],dp[i][j-1]\}+1
dp[i][j]=1≤i≤n,1≤j≤mmin{dp[i−1][j],dp[i−1][j−1],dp[i][j−1]}+1
可以理解为从左上角三个方向来转移,确保最后确定的正方形内部全是1
#include<cstdio>
#include<algorithm>
using namespace std;
int dp[110][110],a[110][110],n,m,ans;
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j])
dp[i][j]=min(dp[i][j-1],min(dp[i-1][j-1],dp[i-1][j]))+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans=max(ans,dp[i][j]);
printf("%d\n",ans);
return 0;
}
总结
有点意思