【题解】洛谷P1387最大正方形 线性DP

题目链接
在这里插入图片描述


d p [ i ] [ j ] dp[i][j] dp[i][j] 为以 ( i , j ) (i,j) (i,j) 为右下角的最大正方形的边长。
d p [ i ] [ j ] = min ⁡ 1 ≤ i ≤ n , 1 ≤ j ≤ m { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − 1 ] , d p [ i ] [ j − 1 ] } + 1 dp[i][j]=\min\limits_{1\leq i\leq n,1\leq j\leq m}\{dp[i-1][j],dp[i-1][j-1],dp[i][j-1]\}+1 dp[i][j]=1in,1jmmin{dp[i1][j],dp[i1][j1],dp[i][j1]}+1
可以理解为从左上角三个方向来转移,确保最后确定的正方形内部全是1

#include<cstdio>
#include<algorithm>
using namespace std;
int dp[110][110],a[110][110],n,m,ans;
int main()
{
	//freopen("in.txt","r",stdin);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&a[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            if(a[i][j])
                dp[i][j]=min(dp[i][j-1],min(dp[i-1][j-1],dp[i-1][j]))+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            ans=max(ans,dp[i][j]);
    printf("%d\n",ans);
    return 0;
}

总结

有点意思

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值