2757: [SCOI2012]Blinker的仰慕者
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1038 Solved: 291
Description
Blinker 有非常多的仰慕者,他给每个仰慕者一个正整数编号。而且这些编号还隐藏着特殊的意义,即编号的各位数字之积表示这名仰慕者对Blinker的重要度。 现在Blinker想知道编号介于某两个值A,B之间,且重要度为某个定值K的仰慕者编号和。
Input
输入的第一行是一个整数N,表示Blinker想知道的信息个数。
接下来的N行,每行有三个数,A,B,K。表示 Blinker想知道编号介于A和B之间的,重要度为K的仰慕者的编号和。
Output
输出N行,每行输出介于A和B之间,重要度为 K的仰慕者编号和。结果可能很大,
模上20120427。
Sample Input
3
1 14 4
1 30 4
10 60 5
0<=K<=10^18
Sample Output
18
40
66
【样例解释】
第一组样例中,在 1到14之间各位数字之积等于 4的有 4和 14,故编号和为18。
HINT
【数据范围】
对于20%的数据,保证: 2<=A<=B<=1000000000,1<=N<=30
对于50%的数据,保证:2<=A<=B<=1000000000000000000,1<=N<=30
对于100%的数据,保证: 2<=A<=B<=1000000000000000000,1<=N<=5000
//Come On 上题解
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define LL long long
const int Mod = 20120427;
const LL INF = pow(9,18);
const int N = 131313;
LL id[N],sum[20][N],num[20][N],all_sum[20],all_num[20],pw[20];
int len;
char bit[30];
inline int Insert_Hash(LL x){
int k=x%N;
while(id[k]!=-1){
++k;
if(k>=N) x=0;
}
id[k]=x;
return k;
}
int make_ID(LL x){
int k=x%N;
while(id[k]!=x){
if(id[k]==-1) return -1;
++k; if(k>=N) k=0;
}
return k;
}
LL stk[N],tot;
void pre_init(){
memset(id,-1,sizeof id );
memset(sum,0,sizeof sum );memset(num,0,sizeof num );
tot=0; pw[0]=1;
for(int i=1;i<20;i++) pw[i]=pw[i-1]*10 % Mod;
int r=0;
for(int i=0;i<=9;i++){
if(make_ID(i)==-1){
Insert_Hash(i);
stk[tot++]=i;
}
num[1][make_ID(i)]=1;sum[1][make_ID(i)]=i;
}
int tail=tot;
for(int i=1;i<19;i++){
for(int j=0;j<tail;j++){
if(pow(9,i)<stk[j]) break;
LL x=stk[j];
int s=make_ID(x),t;
for(LL k=0;k<=9;k++){
if(make_ID(x*k)==-1){
Insert_Hash(x*k);
stk[tot++]=x*k;
}
t=make_ID(x*k);
num[i+1][t]=(num[i+1][t]+num[i][s])%Mod;
sum[i+1][t]=(sum[i+1][t]+sum[i][s]+(k*(pw[i]*num[i][s])%Mod)%Mod)%Mod;
}
}
sort(stk,stk+tot);
tail=tot;
}
memset(all_num,0,sizeof all_num );
memset(all_sum,0,sizeof all_sum );
for(int i=0;i<20;i++)
for(int j=0;j<N;j++){
all_num[i]=all_num[i]+num[i][j];
if(all_num[i]>=Mod) all_num[i]-=Mod;
}
for(int i=0;i<20;++i) for(int j=0;j<N;++j){
all_sum[i]=all_sum[i]+sum[i][j];
if(all_sum[i]>=Mod) all_sum[i]-=Mod;
}
}
LL dfs_zero(int p,LL pre,bool zero,bool limit,bool first){
if(p==0) return zero ? pre : 0;
if(!limit&&!first){
if(!zero) return ((((pre*pw[p])%Mod)*num[p][0])+sum[p][0])%Mod;
else return ((((pre*pw[p])%Mod)*all_num[p])+all_sum[p])%Mod;
}
int tail=limit?bit[p]-'0':9;
LL ret=0;
for(LL v=0;v<=tail;v++){
ret+=dfs_zero(p-1,(pre*10+v)%Mod,zero||(v==0&&!first),limit&&v==tail,first&&v==0);
if(ret>=Mod) ret-=Mod;
}
return ret;
}
LL dfs(int p,LL pre,LL K,bool limit,bool first){
if(p==0) return K==1 ? pre : 0;
int t=make_ID(K);
if(t==-1) return 0;
if(!limit&&!first){
LL nm=num[p][t];
LL sm=sum[p][t];
return (((pre*nm)%Mod*pw[p])+sm)%Mod;
}
int tail=limit?bit[p]-'0':9;
LL ret=0;
for(LL v=0;v<=tail;++v) {
if(first){
if(v==0){
ret+=dfs(p-1,(pre*10)%Mod,K,limit&&v==tail,first);
if(ret>=Mod) ret-=Mod;
}
else if(K%v==0) {
ret+=dfs(p-1,(pre*10+v)%Mod,K/v,limit&&v==tail,false);
if(ret>=Mod) ret-=Mod;
}
}
else if(v!=0&&(K%v)==0) {
ret+=dfs(p-1,(pre*10+v)%Mod,K/v,limit&&v==tail,false);
if(ret>=Mod) ret-=Mod;
}
}
return ret;
}
int main (){
pre_init();
int T;cin>>T;
while(T--){
LL x,y,K;
scanf("%lld%lld%lld",&x,&y,&K);
--x;
sprintf(bit+1,"%lld",x);
len=strlen(bit+1);
reverse(bit+1,bit+1+len);
LL ans=0;
if(K==0) ans-=dfs_zero(len,0,false,true,true);
else ans-=dfs(len,0,K,true,true);
if(ans<0) ans+=Mod;
sprintf(bit+1,"%lld",y);
len=strlen(bit+1);
reverse(bit+1,bit+1+len);
if(K==0) ans+=dfs_zero(len,0,false,true,true);
else ans+=dfs(len,0,K,true,true);
if(ans>=Mod) ans-=Mod;
printf("%lld\n",ans);
}
return 0;
}