SCOI2012 Blinker的仰慕者 BZOJ 2757

2757: [SCOI2012]Blinker的仰慕者
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1038 Solved: 291
Description
Blinker 有非常多的仰慕者,他给每个仰慕者一个正整数编号。而且这些编号还隐藏着特殊的意义,即编号的各位数字之积表示这名仰慕者对Blinker的重要度。 现在Blinker想知道编号介于某两个值A,B之间,且重要度为某个定值K的仰慕者编号和。
Input
输入的第一行是一个整数N,表示Blinker想知道的信息个数。
接下来的N行,每行有三个数,A,B,K。表示 Blinker想知道编号介于A和B之间的,重要度为K的仰慕者的编号和。
Output
输出N行,每行输出介于A和B之间,重要度为 K的仰慕者编号和。结果可能很大,
模上20120427。
Sample Input
3
1 14 4
1 30 4
10 60 5
0<=K<=10^18
Sample Output
18
40
66
【样例解释】
第一组样例中,在 1到14之间各位数字之积等于 4的有 4和 14,故编号和为18。
HINT
【数据范围】
对于20%的数据,保证: 2<=A<=B<=1000000000,1<=N<=30
对于50%的数据,保证:2<=A<=B<=1000000000000000000,1<=N<=30
对于100%的数据,保证: 2<=A<=B<=1000000000000000000,1<=N<=5000

//Come On 上题解 
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define LL long long 
const int Mod = 20120427;
const LL INF = pow(9,18);
const int N = 131313;
LL id[N],sum[20][N],num[20][N],all_sum[20],all_num[20],pw[20];
int len;
char bit[30];
inline int Insert_Hash(LL x){
    int k=x%N;
    while(id[k]!=-1){
        ++k;
        if(k>=N) x=0; 
    }
    id[k]=x;
    return k;
}
int make_ID(LL x){
    int k=x%N;
    while(id[k]!=x){
        if(id[k]==-1) return -1;
        ++k; if(k>=N) k=0;
    }
    return k;
}
LL stk[N],tot;

void pre_init(){
    memset(id,-1,sizeof id );
    memset(sum,0,sizeof sum );memset(num,0,sizeof num );
    tot=0; pw[0]=1;
    for(int i=1;i<20;i++) pw[i]=pw[i-1]*10 % Mod;
    int r=0;
    for(int i=0;i<=9;i++){
        if(make_ID(i)==-1){
            Insert_Hash(i);
            stk[tot++]=i;
        }
        num[1][make_ID(i)]=1;sum[1][make_ID(i)]=i;
    }
    int tail=tot;
    for(int i=1;i<19;i++){
        for(int j=0;j<tail;j++){
            if(pow(9,i)<stk[j]) break;
            LL x=stk[j];
            int s=make_ID(x),t;
            for(LL k=0;k<=9;k++){
                if(make_ID(x*k)==-1){
                    Insert_Hash(x*k);
                    stk[tot++]=x*k;
                }
                t=make_ID(x*k);
                num[i+1][t]=(num[i+1][t]+num[i][s])%Mod;
                sum[i+1][t]=(sum[i+1][t]+sum[i][s]+(k*(pw[i]*num[i][s])%Mod)%Mod)%Mod;
            }
        }
        sort(stk,stk+tot);
        tail=tot;
    }
    memset(all_num,0,sizeof all_num );
    memset(all_sum,0,sizeof all_sum );
    for(int i=0;i<20;i++)
        for(int j=0;j<N;j++){
            all_num[i]=all_num[i]+num[i][j];
            if(all_num[i]>=Mod) all_num[i]-=Mod;
        }
    for(int i=0;i<20;++i) for(int j=0;j<N;++j){
        all_sum[i]=all_sum[i]+sum[i][j];
        if(all_sum[i]>=Mod) all_sum[i]-=Mod;
    }
}
LL dfs_zero(int p,LL pre,bool zero,bool limit,bool first){
    if(p==0) return zero ? pre : 0;
    if(!limit&&!first){
        if(!zero) return ((((pre*pw[p])%Mod)*num[p][0])+sum[p][0])%Mod;
        else return ((((pre*pw[p])%Mod)*all_num[p])+all_sum[p])%Mod;
    }
    int tail=limit?bit[p]-'0':9;
    LL ret=0;
    for(LL v=0;v<=tail;v++){
        ret+=dfs_zero(p-1,(pre*10+v)%Mod,zero||(v==0&&!first),limit&&v==tail,first&&v==0);
        if(ret>=Mod) ret-=Mod;
    }
    return ret;
}
LL dfs(int p,LL pre,LL K,bool limit,bool first){
    if(p==0) return K==1 ? pre : 0;
    int t=make_ID(K);
    if(t==-1) return 0;
    if(!limit&&!first){
        LL nm=num[p][t];
        LL sm=sum[p][t];
        return (((pre*nm)%Mod*pw[p])+sm)%Mod;
    }
    int tail=limit?bit[p]-'0':9;
    LL ret=0;
    for(LL v=0;v<=tail;++v) {  
        if(first){  
            if(v==0){  
                ret+=dfs(p-1,(pre*10)%Mod,K,limit&&v==tail,first);  
                if(ret>=Mod) ret-=Mod;  
            }  
            else if(K%v==0) {  
                ret+=dfs(p-1,(pre*10+v)%Mod,K/v,limit&&v==tail,false);  
                if(ret>=Mod) ret-=Mod;  
            }  
        }  
        else if(v!=0&&(K%v)==0) {  
            ret+=dfs(p-1,(pre*10+v)%Mod,K/v,limit&&v==tail,false);  
            if(ret>=Mod) ret-=Mod;  
        }  
    }  
    return ret;  
}
int main (){
    pre_init();
    int T;cin>>T;
    while(T--){
        LL x,y,K;  
        scanf("%lld%lld%lld",&x,&y,&K);  
        --x;  
        sprintf(bit+1,"%lld",x);  
        len=strlen(bit+1);  
        reverse(bit+1,bit+1+len);  
        LL ans=0;  
        if(K==0) ans-=dfs_zero(len,0,false,true,true);  
        else ans-=dfs(len,0,K,true,true);  
        if(ans<0) ans+=Mod;  
        sprintf(bit+1,"%lld",y);  
        len=strlen(bit+1);  
        reverse(bit+1,bit+1+len);  
        if(K==0) ans+=dfs_zero(len,0,false,true,true);  
        else ans+=dfs(len,0,K,true,true);  
        if(ans>=Mod) ans-=Mod;  
        printf("%lld\n",ans);  
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七情六欲·

学生党不容易~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值