KM算法--带权二分图最佳匹配

KM算法还是比较难理解,对那个很无语的”顶标”,还有一堆定理(表示不想看)~
但是代码还是比较好写,
它是基于匈牙利算法的二分图最大匹配。
思路就看这个神犇的博客吧! –>|传送门|<–
代码是进行了优化的:
时间复杂度O(n^3).
附上代码

#include <cstdio>  
#include <cstring>
#include <vector>  
#include <algorithm>  
using namespace std;  
const int inf=0x7fffffff,maxn=1010;
int w[maxn][maxn],link[maxn],lx[maxn],ly[maxn],slack[maxn];
bool visy[maxn],visx[maxn];

bool dfs(int node){
    visx[node]=1;
    For(i,1,m){
        if(visy[i]) continue;
        int ls=lx[node]+ly[i]-w[node][i];
        if(ls==0){
            visy[i]=1;
            if(link[i]==-1 || dfs(link[i])){
                link[i]=node;
                return 1;
            }
        }
        if(ls<slack[i])
            slack[i]=ls;
    }
    return 0;
}

int km(){
    int sum=0;
    ak(ly);
    For(i,1,n){
        lx[i]=-inf;
        For(j,1,n){
            if(lx[i]<w[i][j])
                lx[i]=w[i][j];
        }
    }
    memset(link,-1,sizeof(link));
    For(i,1,n){
        For(j,1,m) slack[j]=inf;
        while(1){
            ak(visx),ak(visy);
            if(dfs(i)) break;
            int d=inf;
            For(j,1,m){
                if(!visy[j] && slack[j]<d)
                    d=slack[j];
            }
            For(j,1,n)
                if(visx[j])
                    lx[j]-=d;
            For(j,1,m)
                if(visy[j])
                    ly[j]+=d;
                else slack[j]-=d;
        }
    }
    For(i,1,m){
        if(link[i]>-1){
            sum+=w[link[i]][i];
        }
    }
    return sum;
}

上面的博客对这写细节进行了解析,在此不进行赘述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值