6 自制Fashion数据集

本文将指导你如何利用个人收集的资料创建自己的Fashion数据集,适用于深度学习模型训练,特别是TensorFlow项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习如何根据自己已有的数据制作数据集!

import  os
from  PIL import  Image
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from  tensorflow.keras.layers import  Flatten ,Dense,Conv1D,MaxPool1D
from tensorflow.keras.preprocessing.image import  ImageDataGenerator
import matplotlib.pyplot as plt

x_train_path = './data/class4/FASHION_FC/fashion_image_label/fashion_train_jpg_60000/'
y_train_path = './data/class4/FASHION_FC/fashion_image_label/fashion_train_jpg_60000.txt'
x_test_path = './data/class4/FASHION_FC/fashion_image_label/fashion_test_jpg_10000/'
y_test_path = './data/class4/FASHION_FC/fashion_image_label/fashion_test_jpg_10000.txt'

x_train_savepath = './data/class4/FASHION_FC/fashion_image_label/fashion_x_train.npy'
y_train_savepath = './data/class4/FASHION_FC/fashion_image_label/fashion_y_train.npy'
x_test_savepath = './data/class4/FASHION_FC/fashion_image_label/fashion_x_test.npy'
y_test_savepath = './data/class4/FASHION_FC/fashion_image_label/fashion_y_test.npy'

def generateds(path,txt):
    file = open(txt,'r')
    lines = file.readlines()
    file.close()
    x,y_hat = [],[]
    for line in lines:
        value = line.split()
        img_path = path +value[0]
        img = Image.open(img_path)
        img = np.array(img.convert('L'))
        img = img /255.0

        x.append(img)
        y_hat.append(value[1])
        print('loading'+line
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值