1.神经网络实现鸢尾花分类(单层全连接——学习使用)

本文详细介绍了如何运用TensorFlow构建一个简单的单层全连接神经网络来实现鸢尾花数据集的分类。通过实例,读者将学习到深度学习的基本概念和神经网络的构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 神经网络实现鸢尾花分类

import  tensorflow as tf
import numpy as np

#  读取数据集
from sklearn.datasets import load_iris

iris = load_iris()
x_data = iris['data']
y_data = iris['target']

# 使数据集乱序
np.random.seed(116)
np.random.shuffle(x_data)   # 打乱数据

np.random.seed(116)
np.random.shuffle(y_data)   # 打乱数据

tf.random.set_seed(116)


# 将数据集划分成训练集和测试集
x_train  = x_data[:-30]
y_train = y_data[:-30]
assert len(x_train) == len(y_train)
x_test = x_data[-30:]
y_test = y_data[-30:]
assert  len(x_test)==len(y_test)

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值