torch.rand、torch.randn区别

PyTorch中torch.rand与torch.randn的区别详解
本文详细介绍了PyTorch中torch.rand()、torch.rand_like()、torch.randn()以及torch.randint()的使用。torch.rand()返回[0,1)区间内均匀分布的张量,torch.rand_like()生成与输入张量同样大小且包含[0,1)范围内随机数的张量。torch.randn()则生成符合标准正态分布的张量,而torch.randint()用于生成指定范围内的随机整数张量。" 50329517,5145165,IScroll5实践:上拉加载与下拉刷新,"['前端开发', 'JavaScript', '滚动库', '用户交互', '网页优化']

torch.rand()

参考:https://pytorch.org/docs/stable/torch.html#torch.rand
*torch.rand(size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

返回在区间[0,1)[0,1)上由均匀分布的随机数填充的张量
张量的形状由可变参数大小来定义。
在这里插入图片描述
example

>>> torch.rand(4)
tensor([ 0.5204,  0.2503,  0.3525,  0.5673])
>>> torch.rand(2, 3)
tensor([[ 0.8237,  0.5781,  0.6879],
        [ 0.3816,  0.7249,  0.0998]])

torch.rand_like()

参考:https://pytorch.org/docs/stable/torch.html#torch.rand_like
torch.rand_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor

返回与输入相同大小的张量,该张量由区间[0,1)上均匀分布的随机数填充。rand_like(input)相当于torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)

torch.randn()

参考:https://pytorch.org/docs/stable/torch.html#torch.randn
*torch.randn(size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

返回一个从均值为0、方差为1的正态分布(也称为标准正态分布)中填充随机数的张量, outi∼N(0,1)out_i ∼N(0,1)outiN(0,1).
张量的形状由可变参数size来定义
在这里插入图片描述
example

>>> torch.randn(4)
tensor([-2.1436,  0.9966,  2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954,  2.8929, -1.0923],
        [ 1.1719, -0.4709, -0.1996]])

torch.randint()

返回一个填满随机整数的张量,这些整数均匀地在低(含)和高(不含)之间生成。张量的形状由可变参数大小来定义。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值