题目:
题意:
在一条环形的道路上有
n
n
n个点,每个点都有一定的酒的需求,代价是
该
点
的
需
求
∗
到
该
点
的
距
离
该点的需求*到该点的距离
该点的需求∗到该点的距离
现在问我们在哪个点上设酿酒厂能使得总代价最小
分析:
n
2
n^2
n2的暴力就不多
b
b
bb
bb了,很显然
而
O
(
n
)
O(n)
O(n)的做法是考虑到道路是环形的,对于每个点都可能从正着走过来,也可能是反着走,而每条边的贡献是固定,这样就可以很高效地实现转移
代码:
#pragma GCC optimize(2)
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<vector>
#define LL long long
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
LL z[10005],d[10005],d1[10005],d2[10005];
int main()
{
freopen("bro.in","r",stdin);
freopen("bro.out","w",stdout);
LL n=read();
for(LL i=1;i<=n;i++) z[i]=read(),d[i]=read();
LL ans=1000000000000000000ll;
for(LL i=1;i<=n;i++)
{
memset(d1,0,sizeof(d1));memset(d2,0,sizeof(d2));
LL j=i+1;if(j>n) j=1;
while(j!=i)
{
d1[j]+=d1[(j-1?j-1:n)]+d[(j-1?j-1:n)];
j++;if(j>n) j=1;
}
j=i-1;if(!j) j=n;
while(j!=i)
{
d2[j]=d2[(j+1>n?1:j+1)]+d[j];
j--;if(!j) j=n;
}
LL s=0;
for(LL k=1;k<=n;k++)
{
if(k==i) continue;
s+=z[k]*min(d1[k],d2[k]);
}
ans=min(ans,s);
}
cout<<ans;
return 0;
}