题目:
题意:
有
n
n
n种物品,第
i
i
i种物品的价格为
v
i
v_i
vi,每天最多买
x
i
x_i
xi个
有
m
m
m天,第
i
i
i天小K有
w
i
w_i
wi块钱,他会不停购买能买得起的最贵的物品
你需要求出他每天会购买多少个物品
分析:
将所有物品按价格从大到小排序,这样价格从前往后就是单调递增的了
我们二分两次,第一次找到一个位置
k
1
k_1
k1表示之前的物品可以全部拿下,那么对于第
k
1
+
1
k_1+1
k1+1物品我们肯定是无法全部买完,再二分一个位置
k
2
k_2
k2表示在
k
1
k_1
k1之后的位置第一个可以买下部分的位置
然后不断做,不断更新
w
w
w就好了
代码:
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#define LL long long
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1; s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0'; s=getchar();}
return d*f;
}
LL ans,cnt[100005],sum[100005];
LL b[100005];
struct node{
LL v,x;
}a[100005];
bool cmp(node x,node y) {return x.v>y.v;}
int main()
{
freopen("present.in","r",stdin);
freopen("present.out","w",stdout);
LL n=read(),m=read();
for(LL i=1;i<=n;i++)
{
a[i].v=read();a[i].x=read();
b[i]=a[i].v;
}
sort(b+1,b+1+n);
sort(a+1,a+1+n,cmp);
for(LL i=1;i<=n;i++)
{
sum[i]=sum[i-1]+a[i].x*a[i].v;
cnt[i]=cnt[i-1]+a[i].x;
}
sum[n+1]=b[n+1]=a[n+1].v=1e18;
while(m--)
{
LL w=read();
ans=0;
for(LL i=1;i<=n;)
{
LL r=upper_bound(sum+1,sum+2+n,sum[i-1]+w)-sum;
w-=sum[r-1]-sum[i-1]; ans+=cnt[r-1]-cnt[i-1];
ans+=w/a[r].v; w%=a[r].v;
i=n-(upper_bound(b+1,b+n-r+1,w)-b-1)+1;
}
printf("%lld\n",ans);
}
return 0;
}