JZOJ 1293. 气象牛

目录:


题目:

单击查看题目


分析:

对于这道题目,给出的三种求误差的公式,我们可以通过预处理来得到对于每个数的误差是多少,时间复杂度为: O(n3) O ( n 3 )
然后我们就可以愉快的进行dp了:
i代表当前选了哪个数,j代表目前一共选了几个数,k为上次选的数 ,动态转移方程为:
f[i][j]=min{f[i][j],f[k][j1]+zho[k][i]}|zho f [ i ] [ j ] = m i n { f [ i ] [ j ] , f [ k ] [ j − 1 ] + z h o [ k ] [ i ] } | z h o 为 在 中 间 时 的 误 差
(1<=i,j<=n,1<=k<i) ( 1 <= i , j <= n , 1 <= k < i )
而对于我们要求的最小个数以及误差,小编想结合代码进行讲解:


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
int pre[101],lst[101],zho[101][101],f[101][101];
int x[101];
int main()
{
    int n=read(),m=read();
    for(int i=1;i<=n;i++) x[i]=read();
    for(int i=1;i<=n;++i)
      for(int j=1;j<i;++j)
        pre[i]+=2*abs(x[j]-x[i]);//公式
    for(int i=n;i;--i)
      for(int j=n;j>i;--j)
        lst[i]+=2*abs(x[i]-x[j]);//公式
    for(int i=1;i<n;i++)
      for(int j=i+1;j<=n;j++)
        for(int k=i+1;k<j;k++)
          zho[i][j]+=abs(2*x[k]-(x[i]+x[j]));//公式
    memset(f,0x3f,sizeof(f));//dp数组初始化
    int minn=0x3f3f3f3f;
    for(int i=1;i<=n;i++) f[i][1]=pre[i];
    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++)
       for(int k=1;k<i;k++)
         {
            f[i][j]=min(f[i][j],f[k][j-1]+zho[k][i]);
            if(f[i][j]+lst[i]<=m) minn=min(minn,j);
            //还需要计算i后面的误差和
         }
    int ans=0x3f3f3f3f;
    for(int i=1;i<=n;i++)
      ans=min(ans,f[i][minn]+lst[i]);//同上
    printf("%d %d",minn,ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值