目录:
题目:
分析:
对于这道题目,给出的三种求误差的公式,我们可以通过预处理来得到对于每个数的误差是多少,时间复杂度为:
O(n3)
O
(
n
3
)
然后我们就可以愉快的进行dp了:
i代表当前选了哪个数,j代表目前一共选了几个数,k为上次选的数 ,动态转移方程为:
f[i][j]=min{f[i][j],f[k][j−1]+zho[k][i]}|zho为在中间时的误差
f
[
i
]
[
j
]
=
m
i
n
{
f
[
i
]
[
j
]
,
f
[
k
]
[
j
−
1
]
+
z
h
o
[
k
]
[
i
]
}
|
z
h
o
为
在
中
间
时
的
误
差
(1<=i,j<=n,1<=k<i)
(
1
<=
i
,
j
<=
n
,
1
<=
k
<
i
)
而对于我们要求的最小个数以及误差,小编想结合代码进行讲解:
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define LL long long
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
int pre[101],lst[101],zho[101][101],f[101][101];
int x[101];
int main()
{
int n=read(),m=read();
for(int i=1;i<=n;i++) x[i]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<i;++j)
pre[i]+=2*abs(x[j]-x[i]);//公式
for(int i=n;i;--i)
for(int j=n;j>i;--j)
lst[i]+=2*abs(x[i]-x[j]);//公式
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
for(int k=i+1;k<j;k++)
zho[i][j]+=abs(2*x[k]-(x[i]+x[j]));//公式
memset(f,0x3f,sizeof(f));//dp数组初始化
int minn=0x3f3f3f3f;
for(int i=1;i<=n;i++) f[i][1]=pre[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<i;k++)
{
f[i][j]=min(f[i][j],f[k][j-1]+zho[k][i]);
if(f[i][j]+lst[i]<=m) minn=min(minn,j);
//还需要计算i后面的误差和
}
int ans=0x3f3f3f3f;
for(int i=1;i<=n;i++)
ans=min(ans,f[i][minn]+lst[i]);//同上
printf("%d %d",minn,ans);
return 0;
}