JZOJ 3510. 【NOIP2013模拟11.5B组】最短路径

目录:


题目:

单击查看题目


由于每个点要么在去的路上,要么在回来的路上,所以用二进制数表示N个点的状态,对于特殊的四个点特判一下,然后从所有状态中取最优的

期望得分:20分
考虑到每个点只能走一次,且从终点往回走和从起点再走一遍到终点没有区别,所以这道题可以转化为求两条不相交路径和的最小值。
于是考虑用动态规划求解。
F[i][j] F [ i ] [ j ] 表示第一个点走到i,第二个点(回去的那个点)走到j的最优值。
为了保证更新时不会更新出 F[i][i] F [ i ] [ i ] (即一个点走了两次),而且每个点都会在路径上,我们每次用 F[i][j] F [ i ] [ j ] 去更新点 max(i,j)+1 m a x ( i , j ) + 1 ,所以转移方程为:
F[0][0]=0,k=max(i,j)+1 F [ 0 ] [ 0 ] = 0 , k = m a x ( i , j ) + 1
F[k][j]=max{F[k][j],F[i][j]+Dis(i,k)}; F [ k ] [ j ] = m a x { F [ k ] [ j ] , F [ i ] [ j ] + D i s ( i , k ) } ;
F[i][k]=max{F[i][k],F[i][j]+Dis(j,k)}; F [ i ] [ k ] = m a x { F [ i ] [ k ] , F [ i ] [ j ] + D i s ( j , k ) } ;
Dis(i,j) D i s ( i , j ) 为从i直接走到j点的距离.
对于两个特殊点和 max{i,j}=n m a x { i , j } = n 的情况特判处理即可。
期望得分:100
同时上面的DP也可以用记忆化搜索实现,对于 abs(xy)>1 a b s ( x − y ) > 1 的情况,说明当前情况只能从 max{x,y}1 m a x { x , y } − 1 转移过来,当 abs(xy)=1 a b s ( x − y ) = 1 时,则能从 1 min{x,y} 1   m i n { x , y } 中的任意一点转移过来,于是用记忆化搜索完成上面的步骤,加上适当剪枝即可。
期望得分:60~100分


代码:

#pragma GCC optimize("3")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
int x[1001],y[1001];
double f[1001][1001],t[1001][1001];
int main()
{
/*  freopen("path.in","r",stdin);
    freopen("path.out","w",stdout);*/
    int n=read(),b1=read()+1,b2=read()+1;
    for(int i=1;i<=n;i++)
      x[i]=read(),y[i]=read();
    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++)
     {
        if(i==j) continue;
        t[j][i]=t[i][j]=(double)sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
     }
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
        f[i][j]=99999999;
    f[1][1]=0;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
      {
        int k=max(i,j)+1;
        if(k==n+1)
        {
            if(i==n) f[n][n]=min(f[n][n],f[i][j]+t[j][n]);
            else f[n][n]=min(f[n][n],f[i][j]+t[i][n]);
            continue;
        }
        if(k!=b1) f[i][k]=min(f[i][k],f[i][j]+t[j][k]);
        if(k!=b2) f[k][j]=min(f[k][j],f[i][j]+t[i][k]);
      }
    printf("%.2lf",f[n][n]);
    fclose(stdin);
    fclose(stdout);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值