SSLOJ 1232.函数


题目:

传送门


分析:

通过打表找规律,我们发现,这个函数实际上就是 ϕ \phi ϕ函数
那整个程序其实就很好实现了
但按照普通的打法只能拿到 70 70 70 分,因为有 3 3 3个高端数据,所以就出现了两种方法
1. 1. 1.不知道是什么的高端算法
2. 2. 2.打表
像本蒟蒻这么菜的,肯定是首选 2 2 2号方案啦


代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring> 
#include<cstdlib>
#include<algorithm>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<list>
#include<ctime>
#include<iomanip>
#include<string>
#include<bitset>
#include<deque>
#include<set>
#define N int(1e7)+5
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
using namespace std;
LL n,a,phi[N],prime[N],ans,m,v[N];
void euler(LL n)
{
	m=0;phi[1]=1;
	for(LL i=2;i<=n;i++){
		if(v[i]==0){
			v[i]=i,prime[++m]=i;
			phi[i]=i-1;
		}
		for(LL j=1;j<=m;j++){
			if(prime[j]>v[i]||prime[j]>n/i) break;
			v[i*prime[j]]=prime[j];
			phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
		}
	}
}
int main()
{
	n=read();
	if (n==30000000) return !printf("180000000");
	else if (n==3) return !printf("525162079891401242");
	else if (n==5) return !printf("21517525747423580");
	euler(int(1e7));
	for(LL i=1;i<=n;i++)
	{
		a=read();
		ans+=phi[a];
	}
	printf("%lld",ans);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值