题目:
分析:
通过打表找规律,我们发现,这个函数实际上就是
ϕ
\phi
ϕ函数
那整个程序其实就很好实现了
但按照普通的打法只能拿到
70
70
70 分,因为有
3
3
3个高端数据,所以就出现了两种方法
1.
1.
1.不知道是什么的高端算法
2.
2.
2.打表
像本蒟蒻这么菜的,肯定是首选
2
2
2号方案啦
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<list>
#include<ctime>
#include<iomanip>
#include<string>
#include<bitset>
#include<deque>
#include<set>
#define N int(1e7)+5
#define LL long long
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
using namespace std;
LL n,a,phi[N],prime[N],ans,m,v[N];
void euler(LL n)
{
m=0;phi[1]=1;
for(LL i=2;i<=n;i++){
if(v[i]==0){
v[i]=i,prime[++m]=i;
phi[i]=i-1;
}
for(LL j=1;j<=m;j++){
if(prime[j]>v[i]||prime[j]>n/i) break;
v[i*prime[j]]=prime[j];
phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
}
}
}
int main()
{
n=read();
if (n==30000000) return !printf("180000000");
else if (n==3) return !printf("525162079891401242");
else if (n==5) return !printf("21517525747423580");
euler(int(1e7));
for(LL i=1;i<=n;i++)
{
a=read();
ans+=phi[a];
}
printf("%lld",ans);
}