【BZOJ4475】[JSOI2015]子集选取(递推+快速幂)


  • 一道很久以前做过的题,今天又看到了觉得挺好的就记下来。
  • 首先,我们可以对每个元素分开考虑,因为我们可以把子集的限制转化为元素的限制: A i , j  出现元素  x ⇒ A i − 1 , j  和  A i , j − 1  出现元素  x A_{i,j}\text{ 出现元素 }x\Rightarrow A_{i-1,j}\text{ 和 }A_{i,j-1}\text{ 出现元素 }x Ai,j 出现元素 xAi1,j  Ai,j1 出现元素 x
    在这里插入图片描述
  • 因此答案可以表示为 a n a^n an 的形式。
  • 现在的问题就是如何求出 a a a 的表达式。

  • 我们换一个角度考虑,将这个三角形逆时针旋转 90 ° 90° 90°,这样它就变成下面这样:
    -在这里插入图片描述
  • 这是一个合法的选取方案,就是说,某个位置若包含这个元素,那么它的左边及下面的所有格子都要包含。
  • 我们设 f k f_k fk 表示边长为 k k k 的阶梯状三角形的填数方案数。
  • 我们考虑最后一列的填法。
  • 枚举最后一列从下到上选到第 i i i 行的位置, i i i 上面的则不选。
  • 那么从下到上前 i i i 行的所有位置都必须选。
  • 那么剩余 k − i k-i ki 行,不受到限制,而最后一列已经确定,则剩余未确定的三角形大小就是 k − i − 1 k-i-1 ki1
  • 对于 i = k i=k i=k 特殊考虑即可。
  • 递推式即为: f k = ( ∑ i = 0 k − 1 f i ) + 1 f_{k}=(\sum_{i=0}^{k-1}f_{i})+1 fk=(i=0k1fi)+1
  • 初值: f 0 = 1 f_{0} = 1 f0=1
  • 易得 f k = 2 k f_{k}=2^k fk=2k
  • 所以答案即为 2 k n 2^{kn} 2kn
  • 快速幂即可。
#include <bits/stdc++.h>

const int mod = 1e9 + 7; 

int n, K; 

inline int qpow(int a, int b)
{
	int res = 1; 
	for (; b; b >>= 1, a = 1LL * a * a % mod)
		if (b & 1)
			res = 1LL * res * a % mod; 
	return res; 
}

int main()
{
	scanf("%d%d", &n, &K); 
	printf("%d\n", qpow(qpow(2, n), K)); 
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值