1.条件概率--一道老真题
今天说一道概率论的题目,考察古典概型,条件概率和贝叶斯公式。
此题是“概率论与数理统计辅导讲义”第一章例1.8题,我们先看原题和讲义上的解答
在这道题目的评注里,老师给出了一种“错误解法”:
实际上,辅导讲义评注里的“错误解法”才是真正的正确答案,正确答案是0.4855。
辅导讲义所给的答案固执于先取箱子再取零件,所以取到两个箱子的概率都是1/2,这是错误的。因为条件概率的基本特点是压缩样本空间,在给定条件的情况下,样本空间已经发生了变化,其他事件的成立都是以此条件为基础的。在给定第一次取到一等品的条件下,取到两个箱子的概率并不是1/2了。
考虑极端情况,假设第一个箱子有1亿个一等品,1个二等品;第二个箱子有1亿个二等品,1个一等品。现在给定条件第一次取到一等品,你还认为取到第二个箱子的概率是1/2吗?这个时候几乎不可能取到第二个箱子了。
要深刻理解条件概率的本质:压缩样本空间。