【推荐算法课程】CS246 大数据挖掘

一、课程介绍

重点~课程对应教材(pdf可下载):http://www.mmds.org/

CS246主题包括: 频繁项集和关联规则,高维数据中的近邻搜索,局部敏感哈希(LSH),降维,推荐系统,聚类,链接分析,大规模监督机器学习,数据流,挖掘结构化数据的Web, Web广告。

大数据挖掘Mining Massive Data Sets,主讲人是斯坦福大牛Jure Leskovec,他是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。

二、作者介绍

主讲人Jurij Leskovec 是图网络领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。在谷歌学术搜索(Google Scholar)上,Jure拥有接近4.5万的论文引用数量,H指数为84。

Leskovec的研究重点是对大型社会和信息网络进行分析和建模,以研究跨社会,技术和自然世界的现象。他专注于网络结构、网络演化、信息传播、影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值