【思考】金字塔原理 | 逻辑思维表达

note

  • 四个基本原则:
    • 结论先行:用一句话 100% 表达出中心思想。
    • 以上统下:上有结论,下有理由,上下呼应。
    • 归类分组:把具有共同特点的事物进行分类。
    • 逻辑递进:按时间、结构、重要或演绎顺序。
  • MECE法则:相互独立,完全穷尽
  • SCQA标准式:S,即情境(Situation);C,即复杂性,常意译为冲突(Complication);Q,即问题(Question);A,即答案(Answer)。

一、核心内容

  • 结论先行:每个结论下的论据不超过7个,每个论点都要言之有物,明确思想
  • 四个逻辑顺序:时间顺序、空间顺序、重要性顺序、逻辑顺序。
  • 逻辑顺序既可以式自上而下的形式,先有上层的结论,再梳理下层的论据,也可以自下而上的形式,先把下层各种想法汇总,再总结出上层结论。
  • 结构顺序应该满足MECE法则,相互独立,但又完全穷尽。

在这里插入图片描述
注:论证是将论据串联起来的说服性陈述。

(1)逻辑性好的论述
假设我们要论证“学习编程可以提高问题解决能力”。

  1. 前提:编程是一种解决问题的活动,需要分析问题、设计算法、实现代码。
  2. 论点:编程活动中涉及到大量的逻辑思考和问题分解。
  3. 证据:
    • 许多研究表明,持续从事编程工作的人在逻辑思维和问题解决方面能力有显著提高。
    • 通过编程训练,学生在数学和科学课程中的表现也有改善。
  4. 结论:因此,学习编程是一种有效提高问题解决能力的方法。

在这个例子中,每个逻辑步骤从前提开始,通过论点和证据,最终得出结论。

(2)逻辑性差的论述
假设我们要论证“学习编程比学习绘画更有前途”。

  1. 前提:编程可以找到高薪工作。
  2. 论点:编程可以应用在很多领域。
  3. 证据:学习编程的人很多都很成功。
  4. 结论:所以学习编程比学习绘画更有前途。

虽然这种论述看似有一定道理,但存在逻辑跳跃和偏见:

  • 前提只考虑了“高薪”这一单一维度,没有考虑个人兴趣、天赋等其他因素。
  • 论点没有连贯地支撑前提和结论。
  • 证据没有详细说明,且带有很大的普遍性,而缺乏具体的数据或者案例支持。

二、MECE法则

1、谨记分解目的:同一个项目,如果是分析进度,就按过程阶段分析;分析成本,按项目分解;客户消费特征,就按性别、年龄等分析。

2、避免层次混淆:比如“改进服装生产流程,提高生产效率”是第三项“减少服装成本以降低价格”的具体方法之一。

3、借鉴成熟模型:比如PEST、战略分析3C,麦肯锡7S等

在这里插入图片描述

三、SCQA架构

SCQA是四个英文单词的缩写:

S,即情境(Situation);
C,即复杂性,常意译为冲突(Complication);
Q,即问题(Question);
A,即答案(Answer)。

标准式:SCA

另外三招:
1、开门见山(ASC);答案-背景-冲突
2、突出忧虑式(CSA):冲突-背景-答案
3、突出信心式(QSCA):问题-背景-冲突-答案

同样一件事,30秒,30分种都能表达完整,区别于是否深入。
起承转合5步法”:场景导入,打破认知、核心逻辑、举一反三、回顾总结。

在这里插入图片描述

ex:如果一个公司的销售业绩下滑,使用SCQA架构的沟通方式可能是:
Situation:我们的公司在过去几年里一直保持着稳定的销售增长。
Complication:但是,最近一个季度我们的销售额下降了10%。
Question:我们如何能够扭转这一趋势,恢复销售增长?
Answer:通过增加市场推广力度、优化产品线和提高客户服务,我们可以在下个季度实现销售增长。

四、如何应用金字塔原理

2W1H模型,表达清晰:
在这里插入图片描述
目标没有完成,需要向上汇报:
在这里插入图片描述
当然,以下是从图像中提取的所有文字:

首先,在汇报之前想清楚,也就是在思考的时候,要努力往上「爬」:事实→分析→方案→双赢。

其次,在实际汇报的时候,也就是在表达的时候,要轻松往下「滑」:双赢→方案→分析→事实。

总之,我们要把困难的「爬梯」过程留给自己,而把轻松的「顺滑」结果留给对方。

Reference

[1] 《金字塔原理》
[2] 《金字塔原理》干货整理,附带思维导图
[3] 金字塔原理-笔记
[4] 英文写作:Science Research Writing for non-nativespeakers of English

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值