【LLM】Ollama框架入门指北

note

  • Ollama是一个开源框架,专门设计用于在本地运行大型语言模型。它的主要特点是将模型权重、配置和数据捆绑到一个包中,从而优化了设置和配置细节,包括GPU使用情况,简化了在本地运行大型模型的过程。
  • Ollama提供了对模型量化的支持,这可以显著降低显存要求。例如,4-bit量化可以将FP16精度的权重参数压缩为4位整数精度,从而大幅减小模型权重体积和推理所需显存。这使得在普通家用计算机上运行大型模型成为可能。
  • Ollama框架还支持多种不同的硬件加速选项,包括纯CPU推理和各类底层计算架构,如Apple Silicon。这使得Ollama能够更好地利用不同类型的硬件资源,提高模型的运行效率。
  • Ollama可以在命令行中直接进行使用,也可以作为服务通过api的形式进行访问。

一、Ollama框架介绍

官方信息:
Ollama官网:https://ollama.com/download
GitHub:https://github.com/ollama/ollamaOllama
文档:https://github.com/ollama/ollama/tree/main/docs

Ollama是建立在llama.cpp开源推理引擎基础上的大模型推理工具框架。得益于底层引擎提供的高效模型推理,以及多硬件适配,Ollama能够在包括CPU、GPU在内的,不同的硬件环境上,运行各种精度的GGUF格式大模型。通过一个命令行就能拉起LLM模型服务。

Ollama是一个开源的框架,主要用于在本地机器上便捷地部署和运行大型语言模型(LLM)。以下是关于Ollama的一些主要特点和功能:

  • 简化部署:Ollama的设计目标是简化在Docker容器中部署大型语言模型的过程,使得非专业用户也能方便地管理和运行这些复杂的模型。
  • 轻量级与可扩展:作为一个轻量级框架,Ollama保持了较小的资源占用,同时具备良好的可扩展性,允许用户根据需要调整配置以适应不同规模的项目和硬件条件。
  • API支持:Ollama提供了一个简洁的API,使得开发者能够轻松创建、运行和管理大型语言模型实例,降低了与模型交互的技术门槛。
  • 预构建模型库:Ollama包含一系列预先训练好的大型语言模型,用户可以直接选用这些模型应用于自己的应用程序,无需从头训练或自行寻找模型源。
  • 模型导入与定制:Ollama支持从特定平台(如GGUF)或其他深度学习框架(如PyTorch或Safetensors)导入已有的大型语言模型,并允许用户为模型添加或修改提示(prompt engineering)。

二、支持的模型

在这里插入图片描述

参考:https://ollama.com/library
在这里插入图片描述

Reference

[1] 一行命令使用Ollama运行任意魔搭GGUF模型
[2] 极速部署个人计算机 DeepSeek-R1 推理模型
[3] Ollama保姆教程
[4] 官方信息:
Ollama官网:https://ollama.com/download
GitHub:https://github.com/ollama/ollamaOllama
文档:https://github.com/ollama/ollama/tree/main/docs

### 关于AnythingLLMOllama的技术信息 #### AnythingLLM简介 AnythingLLM是一个灵活的框架,旨在简化大型语言模型LLMs)的应用开发过程。通过提供一系列工具和服务,使得开发者能够更便捷地集成、训练以及优化这些强大的AI模型[^1]。 #### Ollama概述 Ollama则专注于加速并优化LLM在各种硬件平台上的运行效率。它不仅支持多种类型的处理器架构,还特别针对最新的GPU进行了性能调优,从而确保即使是最复杂的自然语言处理任务也能高效完成。 #### 使用教程与文档获取方式 对于想要深入了解或应用这两项技术的人来说,官方提供了详尽的南来帮助用户顺利上手。可以通过扫描提供的二维码下载完整的资源包,其中包含了详细的安装说明、配置手册及丰富的案例研究材料等。 #### 安装流程概览 为了便于初次使用者快速入门,在此给出一个简化的安装步骤描述: ```bash # 假设已经按照引完成了环境准备 pip install anythingllm ollama # 安装必要的Python库 ``` 接着参照随附的学习路线图逐步探索更多高级特性。 #### 配置实例展示 下面是一段简单的Python脚本示例,展示了如何利用这两个组件构建一个基本的文字生成器: ```python from anythingllm import ModelLoader import ollama model_path = "path/to/your/model" loader = ModelLoader(model_path) def generate_text(prompt): model_output = loader.generate(prompt=prompt) optimized_result = ollama.optimize(model_output) return optimized_result if __name__ == "__main__": user_input = input("请输入提示词:") result = generate_text(user_input) print(f"生成的结果为:{result}") ``` 这段代码首先加载预训练好的模型文件,之后定义了一个`generate_text()`函数用于接收用户的输入作为触发条件,并最终返回经过优化后的文本输出。 #### 技术对比分析 与其他同类解决方案相比,AnythingLLM加上Ollama组合的优势在于其高度模块化的设计理念——既允许单独使用任一部分功能,也鼓励两者协同工作以达到最佳效果;同时,由于内置了大量的自动化机制,极大地降低了操作门槛和技术难度,非常适合那些希望迅速开展项目却又缺乏深厚背景知识的研究人员或是工程师团队采用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值