【1003】Emergency (25 分)

Dijkstra算法增强版
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<algorithm>  
#include<map>
#include<vector>
#include<queue> 
using namespace std;  
//在dij基础上增加w[]和num[]数组
//w[u]表示从起点s到达顶点u可以得到的最大点权之和
//num[u]表示从起点s到达顶点u的最短路径条数

const int MAXV=510; //最大顶点数
const int INF=1000000000; //无穷大

//n为顶点数,m为边数,st和ed分别为起点和终点
//G为邻接矩阵,weight为点权
//d[]记录最短距离,w[]记录最大点权之和,num[]记录最短路径条数
int n,m,st,ed,G[MAXV][MAXV],weight[MAXV];
int d[MAXV],w[MAXV],num[MAXV];
bool vis[MAXV]={false};//vis[i]==true表示顶点i已访问,初值均为false

void Dijkstra(int s){  //s为起点
	fill(d,d+MAXV,INF);
	memset(num,0,sizeof(num));
	memset(w,0,sizeof(w));
	d[s]=0;
	w[s]=weight[s];
	num[s]=1;
	for(int i=0;i<n;i++){ //循环n次
		int u=-1,MIN=INF; //u使d[u]最小,MIN存放该最小的d[u]
		for(int j=0;j<n;j++){ //找到未访问的顶点中d[]中最小的
			if(vis[j] == false && d[j] < MIN){
				u=j;
				MIN=d[j];
			}
		}
		//找不到小于INF的d[u]说明剩下的顶点和起点s不连通
		if(u == -1) return ;
		vis[u]=true; //标记u为已访问
		for(int v=0;v<n;v++){ 
			//如果v未访问 && u能到达v && 以u为中介点可以使d[v]更优
			if(vis[v]==false && G[u][v] != INF){
				if(d[u]+G[u][v] < d[v]) {  //以u为中介点时能令d[v]变小
					d[v]=d[u]+G[u][v]; //覆盖d[v]
					w[v]=w[u]+weight[v]; //覆盖w[v]
					num[v]=num[u]; //覆盖num[v]
				}else if(d[u] + G[u][v] ==d[v]){  //找到一条相同长度的路径
					if(w[u]+weight[v] > w[v]){  //以u为中介点时点权之和更大
						w[v]=w[u]+weight[v]; //w[v]继承自w[u]
					}
					//最短路径条数与点权无关,必须写在外面
					num[v] += num[u];
				}
			}
		}
	}
}

int main(){   
	scanf("%d%d%d%d",&n,&m,&st,&ed);
	for(int i=0;i<n;i++){
		scanf("%d",&weight[i]); //读入点权
	}
	int u,v;
	fill(G[0],G[0]+MAXV*MAXV,INF); //初始化图G
	for(int i=0;i<m;i++){ 
		scanf("%d%d",&u,&v); //边u--》v
		scanf("%d",&G[u][v]); //读入边权
		G[v][u]=G[u][v]; //因为是无向图
	}
	Dijkstra(st); //Dijkstra算法入口
	printf("%d %d\n",num[ed],w[ed]); //最短距离条数,最短路径中的最大点权
	system("pause");
    return 0;   
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值