要使用 TensorFlow Datasets (TFDS) 来训练一个文本摘要模型,可以选择一个包含文章和摘要的数据集,例如 CNN/DailyMail 数据集。
这个数据集通常用于训练和评估文本摘要模型。
以下是使用 TFDS 加载数据集并训练一个简单的序列到序列 (seq2seq) 模型的过程。
首先,确保安装了 TensorFlow Datasets:
pip install tensorflow tensorflow-datasets
然后,以下是训练文本摘要模型的完整代码:
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.keras.models import Model
from tensorflow.keras.layers import TextVectorization, Embedding, LSTM, Dense
# 加载 CNN/DailyMail 数据集
data, info = tfds.load('cnn_dailymail', with_info=True, as_supervised=True)
train_data, val_data = data['train'], data['validation']
# 为了加快演示,我们将只使用一小部分数据
train_data = train_data.take(5000)
val_data = val_data.take(1000)
# 定义文本向量化和序列长度
sequence_length = 512
vocab_size = 20000
vectorize_layer = TextVectorization(max_tokens=vocab_size, output_mode='int', output_sequence_length=sequence_length)
# 准备数据集
def prepare_dataset(data):
articles = data.map(lambda article, summary: article)
summaries = data.map(lambda article, summary: summary)
vectorize_layer.adapt(articles)
vectorized_articles = articles.map(lambda x: vectorize_layer(x))
vectorized_summaries = summaries.map(lambda x: vectorize_layer(x))
dataset = tf.data.Dataset.zip((vectorized_articles, vectorized_summaries)).batch(32).prefetch(tf.data.AUTOTUNE)
return dataset
train_dataset = prepare_dataset(train_data)
val_dataset = prepare_dataset(val_data)
# 构建一个简单的 seq2seq 模型
embedding_dim = 128
lstm_units = 256
# 编码器
encoder_inputs = tf.keras.Input(shape=(None,), dtype='int64&