本文介绍使用朴素贝叶斯进行文本分类。下面分析各段代码所实现的功能
def loadDataSet(): 2 postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], 3 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 4 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 5 ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 6 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 7 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 8 classVec = [0,1,0,1,0,1] #1 代表侮辱性文档, 0 代表正常言论文档 9 return postingList,classVec 10 上面代码生成用来进行文本分类的文档,每一行表示一个文档,每一个文档都有一个人工预先做好的分类,就是classVec= [0,1,0,1,0,1]中相应位置的值
其中,被归类为1的文档,表示该文档是侮辱性文档,被标记为0 的文档,表明其为正常言论文档。 11 def createVocabList(dataSet): 12 vocabSet = set([]) # 创建空的集合 13 for document in dataSet: 14 vocabSet = vocabSet | set(document) # 操作符 | 用来求两个集合的并集 15 return list(vocabSet) # 返回 集合中 所有不重复的关键词 16该代码实现创建一个词汇列表,这个词汇列表包含输入所有文档中的所有单词,并且没有重复的单词。假如将上面的postingList文档数据输入这个函数之中,
那么这个程序将统计文档中出现的所有单词并存放在一个列表之中,并且没有重复的单词,如下:输出的list(vocabSet)=
['garbage', 'love', 'my', 'dog', 'park', 'buying', 'help', 'is', 'so', 'to', 'ate', 'steak', 'please', 'him', 'not', 'stupid', 'take', 'maybe', 'posting', 'problems', 'worthless', 'I', 'food', 'quit', 'mr', 'dalmation', 'stop', 'has', 'licks', 'how', 'flea', 'cute'] 9 #检查上述的词表发现,这里不会出现重复的单词这个词汇表很有用,后面所有的统计都将根据这个文档的词汇表来。如下面的程序,输入的两个参数,一个就是上面生成的文档词汇表,另外一个是需要处理的文档。
下面函数实现,以文档词汇表为参照,把输入的每个文档inputSet中的每个词语,都和词汇表进行比较,假如inputSet中的一个词汇出现在了词汇表之中,那么在输出向量returnVec中的
相应位置,就会被标记为1;否则标记为0.
这个函数实现以词汇表为参照的新文档的向量转换。inputSet由原来的字符型文档,经过转换之后,全部变成了由0和1构成的数值型文档。
17 def setOfWords2Vec(vocabList, inputSet):# vocabList=词汇表 ,inputSet = 输入的文档 #文档词汇 转换 成文档 向量 18 returnVec = [0]*len(vocabList) # 生成一个值为0,长度和vocabList一样的集合 19 for word in inputSet: 20 if word in vocabList: 21 returnVec[vocabList.index(word)] = 1 22 else: print "the word: %s is not in my Vocabulary!" % word 23 return returnVec # 返回 输入文档inputSet 的向量
打个比方,把postingList的第0个和第3个文档进行向量转换,就得到如下的数值型向量。
bayes.setOfWords2Vec(myVocabList,listOPost[0])# 把文档转换成向理 11 [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0] 12 >>> bayes.setOfWords2Vec(myVocabList,listOPost[3])# 把文档转换成向理 13 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]