朴素贝叶斯分类器

         朴素贝叶斯分类器假设样本各个属性之间相互独立,这样子就可以得到所有属性的联合概率,即类条件概率P(x|c)

如果有充足的独立同分布样本,我们可以这样子来求先验概率

讲到这里,觉得之前使用极大似然法估计类条件概率(或后验概率)现在只是换了一个方式:我们想要得到类条件概率,即一个样本对于一个类c的概率,或者说这个样本在这个类中的概率P(x|c),可以通过假设样本中的属性互相独立,通过估计这个c类中的样本在第i个属性取值为Xi的概率(式7.17),然后将其连乘(7.15),即可得到样本x在类c的概率。其中Xi为样本x的属性。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值