1.边缘检测
原文链接:http://blog.sina.com.cn/s/blog_154bd48ae0102weuk.html
边缘检测的一般步骤:
1.滤波
边缘检测的算法主要是基于图像的一阶和二阶导数。但是导数通常对噪声很敏感,所以首先要用滤波器降低噪声。常见的滤波方法主要是高斯滤波。
2.增强
增强边缘的基础是确定图像各点领域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸现出来,在具体计算的过程中,可以通过计算梯度幅值来确定。
3.检测
经过增强的图像,往往领域中有很多点的梯度值比较大,而在特定的场合中,这些点并不是边缘点,所以应采用某种方式进行取舍,我们通常采取阈值化的方法来检测。
1.1.(cv :: canny)边缘检测
Canny边缘检测的步骤:
1.消除噪声(高斯滤波)
2.计算梯度幅值与方向(sobel滤波器)
3.非极大值抑制(排除一些非边缘像素)
4.滞后阈值
Sobel算子是计算图像梯度的,所以在canny和laplacian中都调用过sobel算子。
Sobel算子是一个主要用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导,