试题 算法训练 最大最小公倍数
Lan
2020-04-05 12:23
293 人阅读
0 条评论
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
输入格式
输入一个正整数N。
输出格式
输出一个整数,表示你找到的最小公倍数。
样例输入
9
样例输出
504
数据规模与约定
1 <= N <= 106。
import java.util.*;
public class 最大最小公倍数 {
/**
* @param args
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long max;
if (n == 3) {
max = 1 * 2 * 3;
} else if (n % 2 == 1) {
max = n * (n - 1) * (n - 2);
} else {
if (n % 3 == 0) {
max = (n - 1) * (n - 2) * (n - 3);
} else {
max = n * (n - 1) * (n - 3);
}
}
System.out.println(max);
}
}
分析:
1、思路一:
刚开始看到这个题目的时候第一想法就是枚举1~N中任意三个数,然后求它们的最小公倍数,从这些最小公倍数中再选择最大的一个即为正确答案,可是1<=N<=10^6 ,如果要列出任意三个数字,最简单的做法就是使用三个嵌套的for循环,如果这样的话,就是比较复杂,时间条件不允许,就会运行超时的。
2、思路二:
数学知识:如果三个数互为质数,那么这三个数的乘积便为它们的最小公倍数。
因为本题目中要求最小公倍数的最大值,那么可以直接从N向前看,找三个连续的互为质数的数,那么它们的乘积便是1~N最小公倍数的最大值。
有以下二种情况。
(1)、当N为奇数时,那么N,N-1,N-2互为质数,很明显NN-1N-2是1到N最小公倍数的最大值。
(2)当N为偶数时,且能被3整除时,N-1,N-2,N-3互质,此时N-1N-2N-3是1到N最小公倍数的最大值;当N为偶数时,但不能被3整除时,N,N-1,N-3互质,此时NN-1N-3是1到N最小公倍数的最大值。
————————————————
原文链接:https://blog.csdn.net/LCHXXX/article/details/104201210
赞赏