bzoj2734[HNOI2012]集合选数 状压DP

20 篇文章 0 订阅

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,…, n}有多少个满足上述约束条件 的子集。

Sample Input

4
Sample Output

8

【样例解释】

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

HINT

Source

day2

表示一脸不可做..连图的话复杂度爆炸,只能膜一发题解.
真的强..
因为选了一个数x,不能选2x,3x.那么我们可以建一个矩阵.
x 2x 4x ….
3x 6x 12x
9x 18x 36x
向下乘3,向左乘2.
那么我们只要状压dp一下,相邻不能选的方案数,就可以了,矩阵最多18列11行,不会超.
但是一个不能包括所有,所以要有多个矩阵,不同矩阵之间的数可以同时出现,所以我们可以用乘法原理直接乘就可以了.
dp的时候判断左右相邻不同用(y&y>>1==0),上下相邻用(x&y==0),x是上一行的状态。

具体细节看代码巴。


#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#include<queue>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int mo=1e9+1;
typedef long long ll;
ll tot=1;
int bin[20],n,a[20][20],b[20],f[20][2048];
bool bz[100005];
inline int cal(int x)
{
    memset(b,0,sizeof(b));
    a[1][1]=x;
    fo(i,2,18)
    if (a[i-1][1]*2<=n)
    a[i][1]=a[i-1][1]*2;
    else a[i][1]=n+1;
    fo(i,1,18)
    fo(j,2,11)
    if (a[i][j-1]*3<=n)
    a[i][j]=a[i][j-1]*3;
    else a[i][j]=n+1;
    fo(i,1,18)
    fo(j,1,11)
    if (a[i][j]<=n)
    {
        bz[a[i][j]]=1;
        b[i]+=bin[j-1];
    }
    fo(i,0,18)
    fo(j,0,b[i])
    f[i][j]=0;
    f[0][0]=1;
    fo(i,0,17)
    fo(x,0,b[i])
    {
        if (f[i][x])
        fo(y,0,b[i+1])
        if (((x&y)==0)&&((y&(y>>1))==0))
        f[i+1][y]=(f[i][x]+f[i+1][y])%mo;
    }
    return f[18][0];
}
int main()
{
    scanf("%d",&n);
    bin[0]=1;
    fo(i,1,19)bin[i]=bin[i-1]<<1;
    fo(i,1,n)
    if (!bz[i])tot=(tot*cal(i))%mo;
    printf("%lld\n",tot);
    return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值