bzoj2734 [HNOI2012]集合选数 状压dp

21 篇文章 0 订阅

#Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

#Solution

最开始以为建出来的图回是一棵树的quq

考虑不能同时存在的两个数字连边,那么可以得到一个类似矩阵的东西
注意到这个矩阵里相邻的数不能同时选,并且长和宽不超过17,那么就可以状压统计了
直接枚举看起来好像会T,但是长度为n的合法二进制状态不超过斐波那契数列第n项,于是复杂度就十分科学了
不同数字作为左上角的矩阵是互相独立的,因此要乘起来

#Code

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#define rep(i,st,ed) for (int i=st,_=ed;i<=_;++i)
#define fill(x,t) memset(x,t,sizeof(x))

typedef long long LL;
const int MOD=1000000001;

const int N=19;

int f[2][131080 ],a[N][N],l[N];

int read() {
	int x=0,v=1; char ch=getchar();
	for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
	for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
	return x*v;
}

void mod(int &x) {
	(x>=MOD)?(x-=MOD):0;
}

int main(void) {
	int n=read(),m; LL ans=1;
	a[1][1]=1;
	rep(i,1,18) {
		if (i!=1) a[i][1]=a[i-1][1]*2;
		rep(j,2,18) a[i][j]=a[i][j-1]*3;
	}
	rep(s,1,n) if ((s%2)&&(s%3)) {
		rep(i,1,18) {
			if (s*a[i][1]>n) {
				m=i-1; break;
			}
			rep(j,2,18) {
				if (s*a[i][j]>n) {
					l[i]=j-1; break;
				}
			}
		}
		rep(i,0,(1<<l[1])-1) f[1][i]=(i&(i<<1))==0;
		rep(i,2,m) {
			fill(f[i&1],0);
			rep(j,0,(1<<l[i])-1) if (!(j&(j<<1))) {
				rep(k,0,(1<<l[i-1])-1) if (!(k&(k<<1))) {
					if (!(j&k)) mod(f[i&1][j]+=f[(i-1)&1][k]);
				}
			}
		}
		int tot=0;
		rep(i,0,(1<<l[m])-1) mod(tot+=f[m&1][i]);
		ans=1LL*ans*tot%MOD;
	}
	printf("%lld", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值