bzoj3886[Usaco2015 Jan]Moovie Mooving 状压DP

168 篇文章 0 订阅
20 篇文章 0 订阅
博客介绍了Usaco2015年一月比赛中的Moovie Mooving问题,强调该问题实际上具有简单的状态压缩动态规划解决方案。作者承认自己在初期列出的DP方程错误,直接求解了最终答案。正确的做法是定义f[i]为处于状态i时能观察到的最远时间,并通过二分查找确定起始点进行状态转移。
摘要由CSDN通过智能技术生成

其实是很简单的状压..但是我太菜了没有想到。
一开始的DP方程就列错了,直接列了个求最终答案的。。
设f[i]表示状态为i时能看到的最远时间,转移显然,二分一下起始点就好了= =

#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e5+5;
const int inf=2147483646;
struct node
{
    int sta[1005],p;
    int len;
}a[25];
int f[1<<21],ans;
int n,m;
inline int find(int x,int id)
{
    int l=-1,r=a[id].p-1,mid,ans;
    while (l<r)
    {
        int mid=(l+r+1)>>1;
        if (a[id].sta[mid]<=x)l=mid;
        else r=mid-1;
    }
    return l;
}
int main()
{
    scanf("%d%d",&n,&m);
    fo(i,0,n-1)
    {
        scanf("%d%d",&a[i].len,&a[i].p);
        fo(j,0,a[i].p-1)
        {
            scanf("%d",&a[i].sta[j]);
        }
    }
    ans=inf;
    int mx=(1<<n);
    memset(f,-1,sizeof(f));
    f[0]=0;
    fo(i,0,mx-1)
    {
        if (f[i]==-1)continue;
        if (f[i]>=m)
        {
            int j=0,k=0;
            for(j=0,k=i;k;k-=(k&(-k)))j++;
            ans=min(ans,j);
            continue;
        }
        fo(j,0,n-1)
        {
            if (i&(1<<j))continue;
            int k=find(f[i],j);
            if (k==-1)continue;
            f[i|(1<<j)]=max(f[i|(1<<j)],a[j].sta[k]+a[j].len);
        }
    }
    if (ans==inf)printf("-1");
    else printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值