bzoj3545[ONTAK2010]Peaks 线段树合并+离散

3 篇文章 0 订阅
1 篇文章 0 订阅

一开始以为是什么没见过的点分治姿势,后来发现不对,肯定要数据结构维护,那难道是树剖?不可能啊这怎么维护= =,在ymw大神的提醒下突然想到线段树合并= =。。
先离散,然后对每一个联通块建一颗线段树(动态开点),然后按照边的从小到大排序,询问也按照那个限制从小到大排序,然后离线,按照题目要求每次把小于当前限制的并查集合并一下,同时线段树合并,然后直接在线段树内寻找k大就可以了,如果区间内的数

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e5+5;
struct node
{
    int x,y,z,id;
}e[N*5],q[N*5];
int f[N],val[N],a[N],root[N];
struct tree
{
    int l,r,s;
}t[N*20];
int n,m,Q,sz,ans[N*5];
bool cmp(node a,node b)
{
    return a.z<b.z;
}
bool cmpq(node a,node b)
{
    return a.y<b.y;
}
inline void ins(int &x,int l,int r,int pos,int v)
{
    if (!x)x=++sz;
    t[x].s+=v;
    if (l==r)return;
    int mid=(l+r)>>1;
    if (pos<=mid)ins(t[x].l,l,mid,pos,v);
    else ins(t[x].r,mid+1,r,pos,v); 
}
inline int query(int x,int l,int r,int k)
{
    if (l==r)return l;
    int mid=(l+r)>>1;
    if (t[t[x].r].s>=k)return query(t[x].r,mid+1,r,k);
    else return query(t[x].l,l,mid,k-t[t[x].r].s);
}
inline int find (int x)
{
    if (f[x]==x)return x;
    return f[x]=find(f[x]);
}
inline int merge(int x,int y)
{
    if (!x||!y)return x+y;
    t[x].s+=t[y].s;
    t[x].l=merge(t[x].l,t[y].l);
    t[x].r=merge(t[x].r,t[y].r);
    return x;
}
inline void union1(int x,int y)
{
    int fx=find(x),fy=find(y);
    if (fx==fy)return;
    f[fy]=fx;
    root[fx]=merge(root[fx],root[fy]);
}
int main()
{
    scanf("%d%d%d",&n,&m,&Q);
    fo(i,1,n)
    {
        scanf("%d",&val[i]);
        a[i]=val[i];f[i]=i;
    }
    sort(a+1,a+1+n);
    int n1=unique(a+1,a+n+1)-a-1;
    fo(i,1,n)
    {
        val[i]=lower_bound(a+1,a+n1+1,val[i])-a;
        ins(root[i],1,n,val[i],1);
    }
    fo(i,1,m)
    {
        scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].z);
    }
    sort(e+1,e+m+1,cmp);
    fo(i,1,Q)
    {
        scanf("%d%d%d",&q[i].x,&q[i].y,&q[i].z);
        q[i].id=i;
    }
    sort(q+1,q+Q+1,cmpq);
    int now=1;
    fo(i,1,Q)
    {
        while (now<=m&&e[now].z<=q[i].y)union1(e[now].x,e[now].y),now++; 
        ans[q[i].id]=t[root[find(q[i].x)]].s>=q[i].z?a[query(root[find(q[i].x)],1,n,q[i].z)]:-1;
    }
    fo(i,1,Q)printf("%d\n",ans[i]);

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值