Description
同3545,强制在线
Solution
首先需要知道一个叫做kruskal重构树的东西
我们先对边权排序,对于一条连通两个不同集合的边新建一个额外点,把x和y分别作为新点的左右儿子,并对新点赋权为边权
这样做可以得到一棵拥有不错性质的二叉树:
- 首先除叶节点外这是一个大根堆
- 其次原图中两点间路径上的最大边为新树上两点lca的点权
知道了这些就很好做了,搞出叶节点的dfs序然后主席树区间求第k大即可
写完才发现MLE了。简单!离散一下
交完又发现MLE了。简单!合并几个大数组
然后又发现RE了。简单!广搜求dfs序
心态爆炸
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)
const int N=200005;
const int E=2000005;
struct edge {int y,next,u,v,w;} e[E];
struct treeNode {int l,r,sum;} t[E];
int mn[N],mx[N],dfn[N],root[N],tot;
int ls[N],fa[N],edCnt,ulim;
int h[N],b[N],acs[N][21],n;
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void add_edge(int x,int y) {
e[++edCnt]=(edge) {y,ls[x],e[edCnt].u,e[edCnt].v,e[edCnt].w}; ls[x]=edCnt;
}
void modify(int &now,int pre,int tl,int tr,int x) {
t[now=++tot]=t[pre]; t[now].sum++;
if (tl==tr) return ;
int mid=(tl+tr)>>1;
if (x<=mid) modify(t[now].l,t[pre].l,tl,mid,x);
else modify(t[now].r,t[pre].r,mid+1,tr,x);
}
void dfs(int now) {
if (now<=n) {
mn[now]=mx[now]=++mn[0];
dfn[mn[0]]=now;
} else mn[now]=n+1;
rep(i,1,20) acs[now][i]=acs[acs[now][i-1]][i-1];
for (int i=ls[now];i;i=e[i].next) {
acs[e[i].y][0]=now;
dfs(e[i].y);
mn[now]=std:: min(mn[now],mn[e[i].y]);
mx[now]=std:: max(mx[now],mx[e[i].y]);
}
}
int kth(int now,int pre,int tl,int tr,int k) {
if (t[now].sum-t[pre].sum<k) return -1;
if (tl==tr) return tl;
int w=t[t[now].r].sum-t[t[pre].r].sum;
int mid=(tl+tr)>>1;
if (k<=w) return kth(t[now].r,t[pre].r,mid+1,tr,k);
return kth(t[now].l,t[pre].l,tl,mid,k-w);
}
bool cmp(edge a,edge b) {
return a.w<b.w;
}
int get_father(int x) {
if (fa[x]==x) return x;
return fa[x]=get_father(fa[x]);
}
int main(void) {
freopen("data.in","r",stdin);
freopen("myp.out","w",stdout);
n=read(); int m=read(),T=read(),tot=n;
rep(i,1,n+m) fa[i]=i;
rep(i,1,n) b[i]=h[i]=read();
rep(i,1,m) e[i].u=read(),e[i].v=read(),e[i].w=read();
std:: sort(e+1,e+m+1,cmp);
std:: sort(b+1,b+n+1); ulim=std:: unique(b+1,b+n+1)-b-1;
rep(i,1,n) h[i]=std:: lower_bound(b+1,b+ulim+1,h[i])-b;
rep(i,1,m) {
int u=get_father(e[i].u),v=get_father(e[i].v);
if (u==v) continue;
h[++tot]=e[i].w;
add_edge(tot,u);
add_edge(tot,v);
fa[u]=fa[v]=tot;
}
dfs(tot);
rep(i,1,n) modify(root[i],root[i-1],1,ulim,h[dfn[i]]);
int lastans=0;
for (;T--;) {
int x=read(),y=read(),z=read();
if (lastans>-1) x^=lastans,y^=lastans,z^=lastans;
int now=x;
drp(i,20,0) if (acs[now][i]&&h[acs[now][i]]<=y) now=acs[now][i];
lastans=kth(root[mx[now]],root[mn[now]-1],1,ulim,z);
if (lastans>-1) lastans=b[lastans];
printf("%d\n", lastans);
}
return 0;
}