bzoj1226 [SDOI2009]学校食堂Dining 状压DP

168 篇文章 0 订阅
1 篇文章 0 订阅

题意:一个学生序列,每一个人有一个想吃的菜t和忍受程度x,如果先让紧跟他后面的人吃,不能超过x个,问最小的进餐时间。如果先做j,在做k,时间是(t[j]|t[k])-(t[j]&t[k])
= =一开始没看见那个紧跟,导致我写了个n^3*7的算法结果T了,想了老长时间不知道该咋做,然后瞄了一波题解,发现看错题目了。。
这种题目套路啊,,一看贡献跟相邻的有关就要设一个结尾的状态,那么明显有:
f[i][j][k]表示做到第i个人,他屁股后的7个人状态为j,01表示是否吃,k表示上一个结尾和现在的距离。
那么j状态把当前位置也表示上,便于处理,然后当j&1时,说明i已经吃了。
那么有 f[i+1][j>>1][k1]=min(f[i][j][k])
否则,我枚举在后面的7位里面到底有哪些人吃了,一一计算贡献。
f[i][j|(1<<l)][l]=min(f[i][j][k]+t[i+k]|t[i+l]-t[i+k]&t[i+k])
注意优先级,我这里就懒得写括号了,时刻记得位运算的优先级最低。
然后WA了个爽,最后发现C++的数组不能为负数,那么+个10就好。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e3+5;
const int MAX=10;
int n,m,inf;
int f[N][256][50];
struct node
{
    int t,b;
}a[N];
int main()
{
    int cas;
    scanf("%d",&cas);
    while (cas--)
    {
        scanf("%d",&n);
        fo(i,1,n)
        {
            scanf("%d%d",&a[i].t,&a[i].b);
        }
        memset(f,0x3f,sizeof(f));
        inf=f[1][0][-1+MAX];
        int tot=1<<8;
        f[1][0][-1+MAX]=0;
        fo(i,1,n)
        {
            fo(j,0,tot-1)
            {
                fo(k,-8,7)
                if (f[i][j][k+MAX]<inf)
                {
                    if (j&1)
                    {
                        f[i+1][j>>1][k-1+MAX]=min(f[i+1][j>>1][k-1+MAX],f[i][j][k+MAX]);
                    }
                    else
                    {
                        int r=inf;
                        fo(l,0,7)
                        {
                            if ((j&(1<<l))==0)
                            {
                                if (i+l>r)break;
                                r=min(r,i+l+a[i+l].b);
                                int tmp;
                                if (!(i+k))tmp=0;
                                else tmp=a[i+k].t^a[i+l].t;
                                f[i][j+(1<<l)][l+MAX]=min(f[i][j+(1<<l)][l+MAX],f[i][j][k+MAX]+tmp);
                            }
                        }
                    }
                }
            }
        }
        int ans=inf;
        fo(i,-8,-1)
        {
            ans=min(ans,f[n+1][0][i+MAX]);
        }
        printf("%d\n",ans);
    }   
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值