[BZOJ1226][SDOI2009]学校食堂(状压DP)

状压 DP
f[i][j][k] 表示第 1 个人到第i1个人已经打完饭,第 i 个人以及后面7个人是否打饭的状态为 j ,当前最后一个打饭的人的编号为i+k k 的范围为8 7 ,所以用数组存时要加上8),那么转移为:
如果 j &1为真,就表示第 i 个人已经打完饭,i之后的 7 个人中,还没打饭的人就再也不会插入到第i个人前面了。所以这时候可以转移到 f[i+1][j>>1][k1] ,即 f[i+1][j>>1][k1]=min(f[i+1][j>>1][k1],f[i][j][k]) ,不需要累积时间(因为在 j &1为真的情况下, f[i][j][k] f[i+1][j>>1][k1] 的意义是一样的)。
而为什么意义是一样的呢?因为可以看出,最后一个打饭的人的编号为 (i+1)+(k1)=i+k ,和 f[i][j][k] 表示的一样。而第 i 个人也打完了饭,所以满足「第1个人到第 i 个人已经打完饭」这个条件。而j>>1就是说 i 之后的第1个人就是 i+1 之后的第 0 个人(就是i+1本人), i 之后的第2个人就是 i+1 之后的第 1 个人,i之后的第 3 个人就是i+1之后的第 2 个人,…。这样就可以看出意义一样了。
j& 1 为假时,是没办法转移到f[i+1]的(因为 i+1 之前的人还有 i 没有打完饭)。但是这时候可以把i以及 i 之后的7个人中选出一个人打饭,也就是枚举 h 0 7 f[i][j|(1<<h)][h]=min(f[i][j|(1<<h)][h],f[i][j][k]+time(i+k,i+h)),其中 time(i,j) 表示如果上一个人编号为 i ,当前的人编号为j,那么做编号为 j 的人的菜需要的时间。 当然,这个转移需要考虑到忍耐度的问题。这样,在i i 之后的7个人,不是每一个还未打饭的人都可以先打饭的。因为编号在他之前的所有未打饭的人的忍耐度必须能忍受这个人在他们之前打饭。所以,在这里用了一个变量 r 来统计了一下,表示到目前为止的未打饭的人的忍受范围(注意,不是忍耐度,忍受范围是指能忍受在其之前打饭的最大位置)的最小值,对于任何一个人,如果i+h>r,就表示他无法满足编号在他之前的所有人的忍受范围,就不要考虑这个人了。代码实现如下:

lir = INF;
for (h = 0; h <= 7; h++) if (!((j >> h) & 1)) {
    if (i + h > lir) break;
    chkmin(lir, i + h + B[i + h]);
    chkmin(f[i][j | (1 << h)][h + 8], f[i][j][k + 8] +
    (i + k ? (T[i + k] ^ T[i + h]) : 0));
}

其中 lir 为上面提到的统计变量 r chkmin(a,b)为如果 b<a 则把 a 赋为b
最后答案即为 min(f[n+1][0][k],8<=k<=0)
完整代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 1005, INF = 0x3f3f3f3f;
int n, T[N], B[N], f[N][1 << 8][20];
void chkmin(int &a, int b) {a = min(a, b);}
void work() {
    int i, j, k, h, lir;
    n = read(); for (i = 1; i <= n; i++)
        T[i] = read(), B[i] = read();
    memset(f, INF, sizeof(f)); f[1][0][7] = 0;
    for (i = 1; i <= n; i++) for (j = 0; j < (1 << 8); j++)
    for (k = -8; k <= 7; k++) if (f[i][j][k + 8] != INF) {
        if (j & 1) chkmin(f[i + 1][j >> 1][k + 7], f[i][j][k + 8]);
        else {
            lir = INF;
            for (h = 0; h <= 7; h++) if (!((j >> h) & 1)) {
                if (i + h > lir) break;
                chkmin(lir, i + h + B[i + h]);
                chkmin(f[i][j | (1 << h)][h + 8], f[i][j][k + 8] +
                (i + k ? (T[i + k] ^ T[i + h]) : 0));
            }
        }
    }
    int res = INF; for (k = 0; k <= 8; k++)
        res = min(res, f[n + 1][0][k]);
    printf("%d\n", res);
}
int main() {
    int T = read();
    while (T--) work();
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值